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Lecture 14

Z Transforms: IntroductionZ Transforms: Introduction

Digital Signal Processing
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License Info for SPFirst Slides

• This work released under a Creative Commons Licensewith the 
following terms:

• Attribution
• The licensor permits others to copy, distribute, display, and perform 
the work. In return, licensees must give the original authors credit.

• Non-Commercial
• The licensor permits others to copy, distribute, display, and perform 
the work. In return, licensees may not use the work for commercial 
purposes—unless they get the licensor's permission.

• Share Alike
• The licensor permits others to distribute derivative works only under 
a license identical to the one that governs the licensor's work.

• Full Text of the License

• This (hidden) page should be kept with the presentation
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READING ASSIGNMENTS

• This Lecture:
– Chapter 7, Sects 7-1 through 7-5

• Other Reading:
– Recitation: Ch. 7

• CASCADING SYSTEMS

– Next Lecture: Chapter 7, 7-6 to the end

5

LECTURE OBJECTIVES

• INTRODUCE the Z-TRANSFORM
– Give Mathematical Definition

– Show how the H(z) POLYNOMIAL simplifies 
analysis

• CONVOLUTION is SIMPLIFIED !

• Z-Transform can be applied to
– FIR Filter: h[n] --> H(z)

– Signals: x[n] --> X(z)
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TWO (no, THREE) DOMAINS

Z-TRANSFORM-DOMAIN

POLYNOMIALS: H(z)
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Three main reasons for Z-Transform

• Offers compact and convenient notation for 
describing digital signals and systems

• Widely used by DSP designers, and in the DSP 
literature

• Pole-zero description of a processor is a great 
help in visualizing its stability and frequency 
response characteristic
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TRANSFORM CONCEPT

• Move to a new domain where
– OPERATIONS are EASIER & FAMILIAR

– Use POLYNOMIALS

• TRANSFORM both ways
– x[n] ---> X(z)   (into the z domain)

– X(z) ---> x[n]  (back to the time domain)
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“TRANSFORM” EXAMPLE

• Equivalent Representations

y[n]x[n]

y[n]x[n]
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Z-TRANSFORM IDEA

• POLYNOMIAL REPRESENTATION

y[n]x[n]
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Z-Transform DEFINITION

• POLYNOMIAL Representation of LTI 
SYSTEM:

• EXAMPLE:
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Z-Transform EXAMPLE

• ANY SIGNAL has a z-Transform:

∑
−=

n

nznxzX ][)(

4321 24642)( −−−− ++++= zzzzzX?)( =zX



3

13

531 321)( −−− −+−= zzzzX

EXPONENT GIVES
TIME LOCATION
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Example

• Find the Z-Transform of the exponentially 
decaying signal shown in the following figure, 
expressing is as compact as possible.

x[n]
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• The Z-Transform of the signal:
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Example

• Find and  sketch, the signal corresponding to 
the Z-Transform:
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• Recasting X(z) as a power series in z-1, we 
obtain:

• Succesive values of x[n], starting at n=0, are 
therefore:

0, 1, -1.2, 1.44, -1.728, ···
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• x[n] is shown in the following figure:

x[n]          

…

n

1          

1.44          

-1.728          

-1.2          
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Z-Transform of FIR Filter

• CALLED the SYSTEM FUNCTIONSYSTEM FUNCTION
• h[n] is same as {bk}

FIR DIFFERENCE EQUATION
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Z-Transform of FIR Filter

• Get H(z) DIRECTLY from the {bk}

• Example 7.3 in the book:

}1,5,6{}{ −=kb
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Ex. DELAY SYSTEM

• UNIT DELAY: find h[n] and H(z)

y[n]x[n]

y[n] = x[n-1]x[n] ]1[ −nδ
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DELAY EXAMPLE

• UNIT DELAY: find y[n] via polynomials
– x[n] = {3,1,4,1,5,9,0,0,0,...}
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DELAY PROPERTY
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GENERAL I/O PROBLEM

• Input is x[n], find y[n]    (for FIR, h[n])

• How to combine X(z) and H(z) ?
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FIR Filter = CONVOLUTION
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CONVOLUTION PROPERTY

• PROOF:

MULTIPLY
Z-TRANSFORMS
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CONVOLUTION EXAMPLE

• MULTIPLY the z-TRANSFORMS:

MULTIPLY  H(z)X(z)
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CONVOLUTION EXAMPLE

• Finite-Length input x[n]

• FIR Filter (L=4) MULTIPLY
Z-TRANSFORMS

y[n] = ?
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CASCADE SYSTEMS

• Does the order of S1 & S2 matter?
– NO, LTI SYSTEMS can be rearranged !!!

– Remember:   h1[n] * h2[n]

– How to combine H1(z) and H2(z) ?

S1 S2
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CASCADE EQUIVALENT

• Multiply the System Functions

x[n]
)(1 zH

y[n]
)(2 zH
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EQUIVALENT
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CASCADE EXAMPLE

y[n]x[n] )(zH

x[n]
)(1 zH

y[n]
)(2 zH

w[n]

1
2 1)( −+= zzH

1
1 1)( −−= zzH

211 1)1)(1()( −−− −=+−= zzzzH

]2[][][ −−= nxnxny

]1[][][ −−= nxnxnw ]1[][][ −+= nwnwny


