Digital Signal Processing

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Digital Signal Processing

Lecture 14

Z Transforms: Introduction

License Info for SPFirst Slides

• This work released under a Creative Commons License with the following terms:

Attribution

- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

 Full Text of the License
 This (hidden) page should be kept with the presentation

READING ASSIGNMENTS

- This Lecture: - Chapter 7, Sects 7-1 through 7-5
- Other Reading:
 - Recitation: Ch. 7 • CASCADING SYSTEMS
 - Next Lecture: Chapter 7, 7-6 to the end

Three main reasons for Z-Transform

- Offers compact and convenient notation for describing digital signals and systems
- Widely used by DSP designers, and in the DSP literature
- Pole-zero description of a processor is a great help in visualizing its stability and frequency response characteristic

TRANSFORM CONCEPT

- Move to a new domain where

 OPERATIONS are EASIER & FAMILIAR
 Use POLYNOMIALS
- TRANSFORM both ways $-x[n] \rightarrow X(z)$ (into the z domain)

Example
Find and sketch, the signal corresponding to
the Z-Transform:
$$X(z) = \frac{1}{z+1.2}$$

• Recasting X(z) as a power series in
$$z^{-1}$$
, we obtain:

$$X(z) = \frac{1}{(z+1)^2} = \frac{z^{-1}}{(1+1)^2 z^{-1}} = z^{-1} (1+1)^{-1} z^{-1}$$

$$= z^{-1} \{1 + (-1.2z^{-1}) + (-1.2z^{-1})^2 + (-1.2z^{-1})^3 + \cdots \}$$

= $z^{-1} - 1.2z^{-2} + 1.44z^{-3} - 1.728z^{-4} + \cdots$

• Succesive values of *x*[*n*], starting at *n*=0, are therefore:

0, 1, -1.2, 1.44, -1.728, …

DELAY EXAMPLE									
• UNIT DELAY: find $y[n]$ via polynomials $-x[n] = \{3,1,4,1,5,9,0,0,0,\}$ $Y(z) = z^{-1}X(z)$									
$Y(z) = z^{-1}(3 + z^{-1} + 4z^{-2} + z^{-3} + 5z^{-4} + 9z^{-5})$									
$Y(z) = 0z^{0} + 3z^{-1} + z^{-2} + 4z^{-3} + z^{-4} + 5z^{-5} + 9z^{-6}$									
п	n < 0	0	1	2	3	4	5	6	n > 6
y[n]	0	0	3	1	4	1	5	9	0

