Digital Signal Processing

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Digital Signal Processing

Lecture 10

FIR Filtering

License Info for SPFirst Slides

- This work released under a Creative Commons License with the following terms: Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
 <u>Full Text of the License</u>
 This (hidden) page should be kept with the presentation

READING ASSIGNMENTS

- This Lecture:
 - Chapter 5, Sects. 5-1, 5-2 and 5-3 (partial)
- Other Reading:
 - Recitation: Ch. 5, Sects 5-4, 5-6, 5-7 and 5-8 CONVOLUTION
 - Next Lecture: Ch 5, Sects. 5-3, 5-5 and 5-6

LECTURE OBJECTIVES

- INTRODUCE FILTERING IDEA
 - Weighted Average
 - Running Average
- FINITE IMPULSE RESPONSE FILTERS
 - -FIR Filters
 - Show how to **<u>compute</u>** the output y[n] from the input signal, *x*[*n*]

4-pt AVERAGER

- CAUSAL SYSTEM: USE PAST VALUES $y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$
- INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$ $x[n] = \delta[n]$ $y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$
- OUTPUT is called "IMPULSE RESPONSE" $h[n] = \{..., 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, ...\}$

