

## Digital Signal Processing

Lecture 0

## Introduction

## Digital Signal Processing (DSP)

Basics:
What is DSP?

## Digital Signal Processing (DSP)

Dictionary definitions of the words in DSP:

- Digital
operaing by the use of discrete signals to represent data in the form of
$\begin{gathered}\text { numbers } \\ \text { Signal }\end{gathered}$
- Signal
a variable parameter by which information is conveyed through an electronic
circuit
Processing
- Processing
- So a simple definition of DSP could be:
changing or analysing information which is measured as discrete sequences
- changing or analysing information which is measured as discre
of numbers
Unique features of DSP as opposed to ordinary digital processing:
- Unique features of DSP as opposerld
- this intimate connection with the real world leads to many unique needs such as the need to react in real time and a need to measure signals and convert them to digital numbers
- signals are discrete
- which means the information in between discrete samples is lost


## WHY USE DSP ?

- Versatility:
- digital systems can be reprogrammed for other applications
very wide variety of application.
- Radar, sonar, telephony, audio, multimedia, communications, ultrasound, process control, digital camera, digital tv, Telecommunications, Sound \& Music, Fourier Optics, X-ray Crystallography, Protein Structure \& DNA, Computerized Tomography,
Nuclear Magnetic Resonance: MRI,Radioastronomy
- Repeatability:
- digital systems can be easily duplicated
- digital systems do not depend on strict component tolerances
- digital system responses do not drift with temperature
- Simplicity:
- some things can be done more easily digitally than with analogue systems
- All these applications share some common features:
- they use a lot of maths (multiplying and adding signals)
- they deal with signals that come from the real world
- they require a response in a certain time
- Where general purpose DSP processors are concerned, most applications deal with signal frequencies that are in the audio range


## Fundamental concepts in DSP

- DSP applications deal with analogue signals
- the analogue signal has to be converted to digital form


- The analogue signal
- a continuous variable defined with infinite precision
is converted to a discrete sequence of measured values which are represented digitally
- Information is lost in converting from analogue to digital, due to:
- inaccuracies in the measurement
- uncertainty in timing
- limits on the duration of the measurement
- These effects are called quantisation errors


## Analog-to Digital Conversion

- ADC consists of four steps to digitize an analog signal:

1. Filtering
2. Sampling
3. Quantization
4. Binary encoding

- Before we sample, we have to filter the signal to limit the maximum frequency of the signal as it affects the sampling rate.
- Filtering should ensure that we do not distort the signal, ie remove high frequency components that affect the signal shape.

Signal Encoding: Analog-to Digital Conversion

Continuous (analog) signal $\leftrightarrow$ Discrete signal
$x(t)=f(t) \leftrightarrow$ Analog to digital conversion $\leftrightarrow x(n)=x(1), x(2), x(3), \ldots x(n)$



## Sampling

- The sampling results in a discrete set of digital numbers that represent measurements of the signal - usually taken at equal intervals of time
- Sampling takes place after the hold
- The hold circuit must be fast enough that the signal is not changing during the time the circuit is acquiring the signal value
- We don't know what we don't measure
- In the process of measuring the signal, some information is lost


## Sampling

- Analog signal is sampled every $\mathrm{T}_{\mathrm{S}}$ secs.
- $\mathrm{T}_{\mathrm{s}}$ is referred to as the sampling interval.
- $f_{s}=1 / T_{\mathrm{s}}$ is called the sampling rate or sampling frequency.
- There are 3 sampling methods:
- Ideal - an impulse at each sampling instant
- Natural - a pulse of short width with varying amplitude
- Flattop - sample and hold, like natural but with single amplitude value
- The process is referred to as pulse amplitude modulation PAM and the outcome is a signal with analog (non integer) values




## Sampling Theorem

$$
F_{s} \geq 2 f_{m}
$$

According to the Nyquist theorem, the sampling rate must be at least 2 times the highest frequency contained in the signal.


## Quantization

- Sampling results in a series of pulses of varying amplitude values ranging between two limits: a $\min$ and a max.
- The amplitude values are infinite between the two limits.
- We need to map the infinite amplitude values onto a finite set of known values.
- This is achieved by dividing the distance between $\min$ and max into $L$ zones, each of height $\Delta$.

$$
\Delta=(\max -\min ) / L
$$

## Quantization Levels

- The midpoint of each zone is assigned a value from 0 to $L-1$ (resulting in $L$ values)
- Each sample falling in a zone is then approximated to the value of the midpoint.


## Quantization Zones

- Assume we have a voltage signal with amplitutes $\mathrm{V}_{\text {min }}=-20 \mathrm{~V}$ and $\mathrm{V}_{\text {max }}=+20 \mathrm{~V}$.
- We want to use $\mathrm{L}=8$ quantization levels.
- Zone width $\Delta=(20-20) / 8=5$
- The 8 zones are: -20 to $-15,-15$ to $-10,-10$ to $-5,-5$ to 0,0 to $+5,+5$ to $+10,+10$ to $+15,+15$ to +20
- The midpoints are: $-17.5,-12.5,-7.5,-2.5$, $2.5,7.5,12.5,17.5$


## Assigning Codes to Zones

- Each zone is then assigned a binary code.
- The number of bits required to encode the zones, or the number of bits per sample as it is commonly referred to, is obtained as follows:

$$
\mathrm{n}_{\mathrm{b}}=\log _{2} \mathrm{~L}
$$

- Given our example, $\mathrm{n}_{\mathrm{b}}=3$
- The 8 zone (or level) codes are therefore: 000, $001,010,011,100,101,110$, and 111
- Assigning codes to zones:
- 000 will refer to zone -20 to -15
- 001 to zone -15 to -10 , etc.

Quantization and encoding of a sampled signal


## Quantization Error

- When a signal is quantized, we introduce an error


## Analog-to-digital Conversion

Example An 12-bit analog-to-digital converter (ADC) advertises an accuracy of $\pm$ the least significant bit (LSB). If the input range of the ADC is 0 to 10 volts, what is the accuracy of the ADC in analog volts?

Solution: If the input range is 10 volts then the analog voltage represented by the LSB would be:

$$
V_{L S B}=\frac{V_{\max }}{2^{\mathrm{Nu} \text { bits }}}=\frac{10}{2^{12}}=\frac{10}{4096}=.0024 \text { volts }
$$

Hence the accuracy would be $\pm .0024$ volts.

## Sampling related concepts

- Over/exact/under sampling
- Regular/irregular sampling
- Linear/Logarithmic sampling
- Aliasing
- Anti-aliasing filter
- Image
- Anti-image filter

Steps for digitization/reconstruction of a signal

- Band limiting (LPF) •D/A converter
- Sampling / Holding - Sampling / Holding
- Quantization - Image rejection
- Coding

These are basic steps for $\quad$ These are basic steps for A/D conversion
reconstructing a sampled digital signal

Digital data: end product of A/D conversion and related concepts

- Bit: least digital information, binary 1 or 0
- Nibble: 4 bits
- Byte: 8 bits, 2 nibbles
- Word: 16 bits, 2 bytes, 4 nibbles
- Some jargon:
- integer, signed integer, long integer, 2s complement, hexadecimal, octal, floating point, etc.


## Data types

- Our first requirement is to find a way to represent information (data) in a form that is mutually comprehensible by human and machine.
- Ultimately, we will have to develop schemes for representing all conceivable types of information language, images, actions, etc.
- We will start by examining different ways of representing integers, and look for a form that suits the computer.
- Specifically, the devices that make up a computer are switches that can be on or off, i.e. at high or low voltage. Thus they naturally provide us with two symbols to work with: we can call them on \& off, or (more usefully) 0 and $l$.


## Signal

- An information variable represented by physical quantity.
- For digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values in digital systems.
- Binary values are represented abstractly by:

$$
\text { digits } 0 \text { and } 1
$$

- words (symbols) False (F) and True (T)
words (symbols) Low (L) and High (H)
and words On and Off.
- Binary values are represented by values or ranges of values of physical quantities


## Number Systems - Representation

- Positive radix, positional number systems
- A number with radix $\boldsymbol{r}$ is represented by a string of digits:

$$
A_{\mathrm{n}-1} A_{\mathrm{n}-2} \ldots A_{1} A_{0} \cdot A_{-1} A_{-2} \ldots A_{-\mathrm{m}+1} A_{-\mathrm{m}}
$$ in which $\mathbf{0} \leq \boldsymbol{A}_{\mathbf{i}}<\boldsymbol{r}$ and. is the radix point.

- The string of digits represents the power series:

$$
\begin{aligned}
&(\text { Number })_{\mathrm{r}}=\left(\sum_{i=0}^{\mathrm{i}=\mathrm{n}-1} A_{\mathrm{i}} \cdot r^{\mathrm{i}}\right)+\left(\sum_{\mathrm{j}=-\mathrm{m}}^{\mathrm{j}=-1} A_{\mathrm{j}} \cdot r^{\mathrm{j}}\right) \\
& \text { (Integer Portion) }+(\text { Fraction Portion })
\end{aligned}
$$

| Unsigned Binary Integers |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $Y=" a b c "=a .2^{2}+\mathrm{b} .2^{1}+\mathrm{c} .2^{0}$ |  |  |  |  |
| (where the digits $\mathrm{a}, \mathrm{b}, \mathrm{c}$ can each take on the values of 0 or 1 only) |  |  |  |  |
| $N=$ number of bits |  | 3-bits | 5-bits | 8 -bits |
| Range is: | 0 | 000 | 00000 | 00000000 |
| $0 \leq i<2^{N}-1$ | 1 | 001 | 00001 | 00000001 |
| Problem: | 2 |  | 00010 | 00000010 |
| - How do we represent negative numbers? | 3 |  | 00011 | 00000011 |
|  |  | 100 | 00100 | 00000100 |

## Limitations of integer representations

- Most numbers are not integer!
- Even with integers, there are two other considerations:
- Range:
- The magnitude of the numbers we can represent is
determined by how many bits we use:
- e.g. with 32 bits the largest number we can represent is about $+/-2$
billion, far too small for many purposes. billion, far too small for many purposes.
- Precision:
- The exactness with which we can specify a number:
- e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal repesentation.
- We need another data type!


## Two's Complement

- Transformation
- To transform a into -a, invert all
bits in a and add 1 to the result


Advantages:

- Operations need not check the sign
- Only one representation for zero
- Efficient use of all the bits

| -16 | 10000 |
| ---: | ---: |
| $\ldots$ | $\ldots$ |
| -3 | 11101 |
| -2 | 11110 |
| -1 | 11111 |
| 0 | 00000 |
| +1 | 00001 |
| +2 | 00010 |
| +3 | 00011 |
| $\ldots$ | $\ldots$ |
| +15 | 01111 |

## Decimal Numbers

- "decimal" means that we have ten digits to use in our representation (the symbols 0 through 9)
- What is 3546 ?
- it is three thousands plus five hundreds plus four tens plus six ones.
- i.e. $3546=3.10^{3}+5.10^{2}+4.10^{1}+6.10^{0}$
- How about negative numbers?
- we use two more symbols to distinguish positive and negative:
+ and -
- 


## Real numbers

- Our decimal system handles non-integer real numbers by adding yet another symbol - the decimal point (.) to make a fixed point notation:
- e.g. $3456.78=3.10^{3}+4.10^{2}+5.10^{1}+6.10^{0}+7.10^{-1}+8.10^{-2}$
- The floating point, or scientific, notation allows us to represent very large and very small numbers (integer or real), with as much or as little precision as needed:
- Unit of electric charge $e=1.602176462 \times 10^{-19}$ Coulomb
- Volume of universe $=1 \times 10^{85} \mathrm{~cm}^{3}$
- the two components of these numbers are called the mantissa and the exponent


## Real numbers in binary

We mimic the decimal floating point notation to create a "hybrid" binary floating point number:

- We first use a "binary point" to separate whole numbers from
fractional numbers to make a fixed point notation:
- e.g. $00011001.110=1.2^{4}+1.2^{3}+1.2^{1}+1.2^{-1}+1.2^{-2} \Rightarrow 25.75$
( $2^{-1}=0.5$ and $2^{-2}=0.25$, etc.)
- We then "float" the binary point:
- $00011001.110=>1.1001110 \times 2^{4}$
mantissa $=1.1001110$, exponent $=4$
- Now we have to express this without the extra symbols ( $\mathrm{x}, 2$, . )
- by convention, we divide the available bits into three fields:


## IEEE-754 fp numbers - 2

- Example: Find the corresponding fp representation of 25.75
- $25.75 \Rightarrow>00011001.110 \Rightarrow 1.1001110 \times 2^{4}$
- sign bit $=0$ (+ve)
- normalized mantissa (fraction) $=10011100000000000000000$
- biased exponent $=4+127=131 \Rightarrow 10000011$
- so $25.75=>01000001110011100000000000000000=>\times 41$ CE0000
- Values represented by convention:
- Infinity $(+$ and -$)$ : exponent $=255(11111111)$ and fraction $=0$
- NaN (not a number): exponent $=255$ and fraction $\neq 0$
- Zero (0): exponent $=0$ and fraction $=0$
- note: exponent $=0 \Rightarrow$ fraction is de-normalized, i.e no hidden 1


## Binary Numbers and Binary Coding

- Flexibility of representation
- Within constraints below, can assign any binary combination (called a code word) to any data as long as data is uniquely encoded.
- Information Types


## Numeric

- Must represent range of data needed
- Very desirable to represent data such that simple,
straightforward computation for common arithmetic operations permitted
Tight relation to binary numbers
- Non-numeric
- Greater flexibility since arithmetic operations not applied.
- Not tied to binary numbers


## Non-numeric Binary Codes

- Given $n$ binary digits (called bits), a binary code is a mapping from a set of represented elements to a subset of the $2^{\boldsymbol{n}}$ binary numbers.
- Example: A binary code for the seven colors of the rainbow
- Code 100 is not used

| Color | Binary Number |
| :--- | :---: |
| Red | $\mathbf{0 0 0}$ |
| Orange | $\mathbf{0 0 1}$ |
| Yellow | $\mathbf{0 1 0}$ |
| Green | $\mathbf{0 1 1}$ |
| Blue | $\mathbf{1 0 1}$ |
| Indigo | $\mathbf{1 1 0}$ |
| Violet | $\mathbf{1 1 1}$ |

## Number of Bits Required

- Given $M$ elements to be represented by a binary code, the minimum number of bits, $n$, needed, satisfies the following relationships:
$2^{n}>M>2^{(n-1)}$
$n=\left\lceil\log _{2} M\right\rceil$ where $\lceil x\rceil$, called the ceiling
function, is the integer greater than or equal to $x$.
- Example: How many bits are required to represent decimal digits with a binary code? -4 bits are required ( $n=\left\lceil\log _{2} 9\right\rceil=4$ )

