Digital Signal Processing

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Digital Signal Processing

Lecture 8

Sampling & Aliasing

License Info for SPFirst Slides

- This work released under a **Creative Commons License** with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.
- · Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

 Full Text of the License
 This (hidden) page should be kept with the presentation

READING ASSIGNMENTS

- This Lecture:
 - Chap 4, Sections 4-1 and 4-2
 - Replaces Ch 4 in DSP First, pp. 83-94
- Other Reading:
 - Recitation: Strobe Demo (Sect 4-3)
 - Next Lecture: Chap. 4 Sects. 4-4 and 4-5

LECTURE OBJECTIVES

- SAMPLING can cause ALIASING
 - Sampling Theorem
 - Sampling Rate > 2(Highest Frequency)
- Spectrum for digital signals, x[n]
 - Normalized Frequency

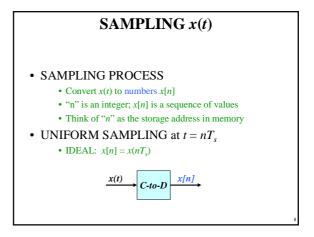
$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

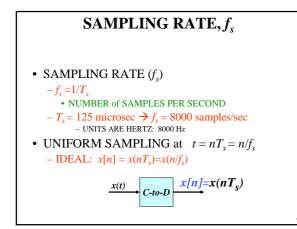
$$\hat{ALIASING}$$

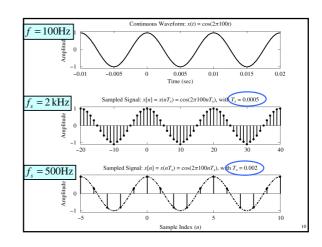
SYSTEMS Process Signals

- PROCESSING GOALS:
 - Change x(t) into y(t)
 - For example, more BASS
 - Improve x(t), e.g., image deblurring
 - Extract Information from x(t)

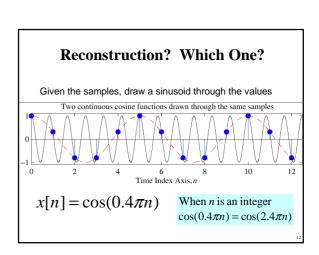
System IMPLEMENTATION • ANALOG/ELECTRONIC: • Circuits: resistors, capacitors, op-amps x(t) ELECTRONICS • DIGITAL/MICROPROCESSOR • Convert x(t) to numbers stored in memory x(t) A-to-D x[n] COMPUTER y[n] D-to-A y(t)







• HOW OFTEN? - DEPENDS on FREQUENCY of SINUSOID - ANSWERED by SHANNON/NYQUIST Theorem - ALSO DEPENDS on "RECONSTRUCTION" Shannon Sampling Theorem A continuous-time signal x(t) with frequencies no higher than f_{\max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\max}$



STORING DIGITAL SOUND

- x[n] is a SAMPLED SINUSOID
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples
 - Stereo uses 2 channels
- Number of bytes for 1 minute is
 - $-2 \times (16/8) \times 60 \times 44100 = 10.584$ Mbytes

DISCRETE-TIME SINUSOID

• Change x(t) into x[n] **DERIVATION**

$$x(t) = A\cos(\omega t + \varphi)$$

$$x[n] = x(nT_s) = A\cos(\omega nT_s + \varphi)$$

$$x[n] = A\cos((\omega T_s)n + \varphi)$$

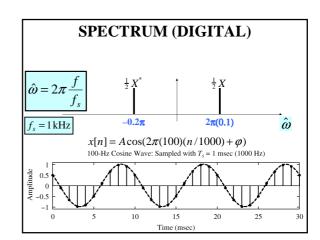
$$x[n] = A\cos(\hat{\omega}n + \varphi)$$

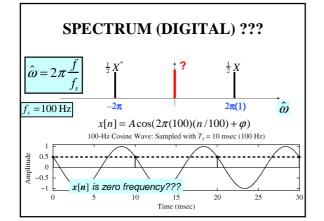
$$\hat{\omega} = \omega T_s = \frac{\omega}{f}$$
 DEFINE DIGITAL FREQUENCY

DIGITAL FREQUENCY

- $\hat{\omega}$ VARIES from 0 to 2π , as f varies from 0 to the sampling frequency
- UNITS are radians, not rad/sec
 - DIGITAL FREQUENCY is NORMALIZED

$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f}$$





The REST of the STORY

- Spectrum of x[n] has more than one line for each complex exponential
 - Called **ALIASING**
 - MANY SPECTRAL LINES
- SPECTRUM is PERIODIC with period = 2π

$$A\cos(\hat{\omega}n + \varphi) = A\cos((\hat{\omega} + 2\pi)n + \varphi)$$

ALIASING DERIVATION

• Other Frequencies give the same $\hat{\omega}$ $x_1(t) = \cos(400\pi t) \quad \text{sampled at } f_s = 1000 \,\text{Hz}$ $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$ $x_2(t) = \cos(2400\pi t) \quad \text{sampled at } f_s = 1000 \,\text{Hz}$ $x_2[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$ $x_2[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$ $\Rightarrow x_2[n] = x_1[n]$ $2400\pi - 400\pi = 2\pi(1000)$

ALIASING DERIVATION-2

• Other Frequencies give the same $\hat{\omega}$ If $x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$ $t \leftarrow \frac{n}{f_s}$ and we want : $x[n] = A\cos(\hat{\omega}n + \varphi)$ then : $\hat{\omega} = \frac{2\pi(f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$ $\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$

ALIASING CONCLUSIONS

- ADDING f_s or $2f_s$ or $-f_s$ to the FREQ of x(t) gives exactly the same x[n]
 - The samples, $x[n] = x(n/f_s)$ are EXACTLY THE <u>SAME VALUES</u>
- GIVEN x[n], WE CAN'T DISTINGUISH f_o FROM $(f_o + f_s)$ or $(f_o + 2f_s)$

NORMALIZED FREQUENCY

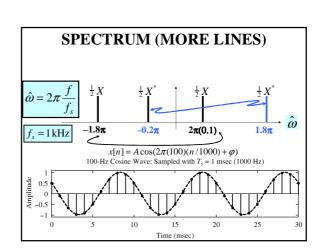
• DIGITAL FREQUENCY
Normalized Radian Frequency

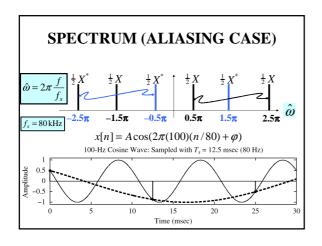
$$\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$$

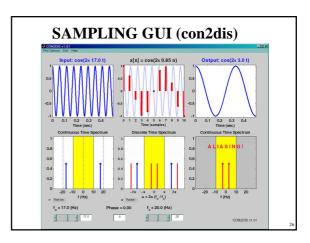
Normalized Cyclic Frequency $\hat{f} = \hat{\omega}/(2\pi) = fT_s = f/f_s$

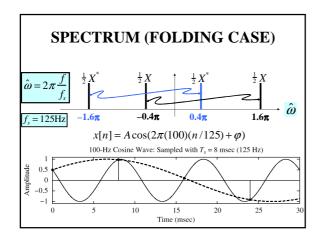
SPECTRUM for x[n]

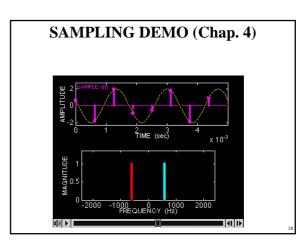
- PLOT versus NORMALIZED FREQUENCY
- INCLUDE **ALL** SPECTRUM LINES
 - ALIASES
 - ADD MULTIPLES of 2π
 - SUBTRACT MULTIPLES of 2π
 - FOLDED ALIASES
 - (to be discussed later)
 - ALIASES of NEGATIVE FREQS











ALIASING DERIVATION

• Other Frequencies give the same $\hat{\omega}$ If $x(t) = A\cos(2\pi(\underline{f} + \ell f_s)t + \varphi)$ and we substitute: $t \leftarrow \frac{n}{f_s}$ then: $x[n] = A\cos(2\pi(f + \ell f_s)\frac{n}{f_s} + \varphi)$ or, $x[n] = A\cos(2\pi f_s n + 2\pi \ell n + \varphi)$

• Other Frequencies give the same
$$\hat{\omega}$$

If $x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$ and we want: $x[n] = A\cos(\hat{\omega}n + \varphi)$
then: $\hat{\omega} = \frac{2\pi(f + \ell f_s)}{f_s} = \frac{2\pi f}{f_s} + \frac{2\pi \ell f_s}{f_s}$
 $\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s}$

ALIASING DERIVATION-2

FOLDING DERIVATION

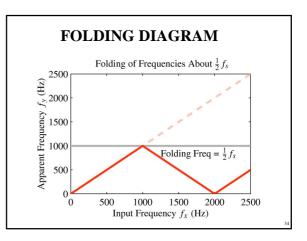
• Negative Freqs can give the same $x(t) = A\cos(2\pi(-f + \ell f_s)t - \varphi)$ $x[n] = x(nT_s) = A\cos(2\pi(-f + \ell f_s)nT_s - \varphi)$ $x[n] = A\cos((-2\pi fT_s)n + (2\pi \ell f_sT_s)n - \varphi)$ $x[n] = A\cos((2\pi fT_s)n - 2\pi \ell n + \varphi)$ $x[n] = A\cos(\hat{\varphi}n + \varphi)$ $x[n] = A\cos(\hat{\varphi}n + \varphi)$ SAME DIGITAL SIGNAL

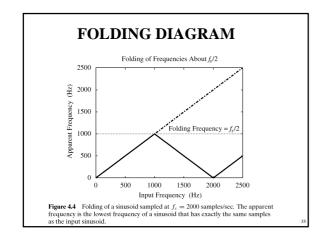
FOLDING (a type of ALIASING)

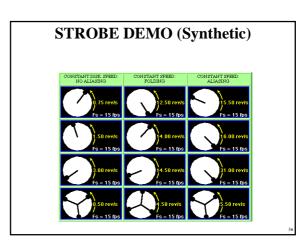
- MANY x(t) give IDENTICAL x[n]
- CAN'T TELL f_0 FROM (f_s-f_0)
 - Or, $(2f_s-f_0)$ or, $(3f_s-f_0)$
- EXAMPLE:
 - -y(t) has 1000 Hz component
 - SAMPLING FREQ = 1500 Hz
 - WHAT is the "FOLDED" ALIAS?

 $-1000+1500 \rightarrow 500$

Normalized Radian Frequency $\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$ $\hat{\omega} = \omega T_s = -\frac{2\pi f}{f_s} + 2\pi \ell$ Folded Alias







ALIASING DERIVATION

• Other Frequencies give the same $\hat{\omega}$

$$x(t) = A\cos(2\pi(f + \ell f_s)t + \varphi)$$

$$x[n] = x(nT_s) = A\cos(2\pi(f + \ell f_s)nT_s + \varphi)$$

$$x[n] = A\cos((2\pi fT_s)n + (2\pi \ell f_s T_s)n + \varphi)$$

$$x[n] = A\cos((2\pi fT_s)n + \underline{2\pi\ell n} + \varphi)$$

$$x[n] = A\cos(\hat{\omega}n + \varphi)$$
 $\hat{\omega} = 2\pi f T_s = \frac{2\pi f}{f_s}$