Digital Signal Processing

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Digital Signal Processing

Lecture 5

Periodic Signals, Harmonics & **Time-Varying Sinusoids**

License Info for SPFirst Slides

- This work released under a **Creative Commons License** with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes—unless they get the licensor's permission.
- · Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

 Full Text of the License
 This (hidden) page should be kept with the presentation

READING ASSIGNMENTS

- This Lecture:
 - Chapter 3, Sections 3-2 and 3-3
 - Chapter 3, Sections 3-7 and 3-8
- Next Lecture:
 - -Fourier Series ANALYSIS
 - Sections 3-4, 3-5 and 3-6

Problem Solving Skills

- Math Formula
 - Sum of Cosines
 - Amp, Freq, Phase
- · Recorded Signals
 - Speech
 - Music
 - No simple formula
- Plot & Sketches
 - -S(t) versus t
 - Spectrum
- MATLAB
 - Numerical
 - Computation
 - Plotting list of numbers

LECTURE OBJECTIVES

- Signals with **HARMONIC** Frequencies
 - Add Sinusoids with $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

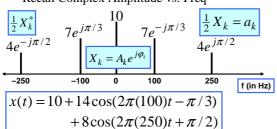
FREQUENCY can change vs. TIME

Chirps: $x(t) = \cos(\alpha t^2)$

Introduce Spectrogram Visualization (specgram.m) (plotspec.m)

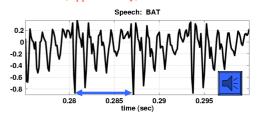
SPECTRUM DIAGRAM

· Recall Complex Amplitude vs. Freq



SPECTRUM for PERIODIC?

- Nearly Periodic in the Vowel Region
 - Period is (Approximately) T = 0.0065 sec



PERIODIC SIGNALS

- Repeat every T secs
 - Definition

$$x(t) = x(t+T)$$

- Example: x(t) = x(t+T) $x(t) = \cos^{2}(3t)$ T = ?- Speech can be "quasi-periodic" $T = \frac{2\pi}{3}$ $T = \frac{\pi}{3}$ $T = \frac{\pi}{3}$ Definition: Period is <math>T $e^{j\omega t} = t$ $\Rightarrow e^{j\omega T} = 1 \Rightarrow \omega T = 2\pi k$

Period of Complex Exponential

$$x(t) = e^{j\omega t}$$

$$\rho j\omega(t+T) = \rho j\omega t$$

$$\omega = \frac{2\pi k}{T} = \left(\frac{2\pi}{T}\right)k = \omega_0 k$$
 k = integer

Harmonic Signal Spectrum

Periodic signal can only have : $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$X_k = A_k e^{j\varphi_k}$$

$$x(t) = X_0 + \sum_{k=1}^{N} \left\{ \frac{1}{2} X_k e^{j2\pi k f_0 t} + \frac{1}{2} X_k^* e^{-j2\pi k f_0 t} \right\}$$

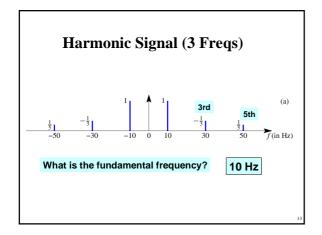
Define FUNDAMENTAL FREQ

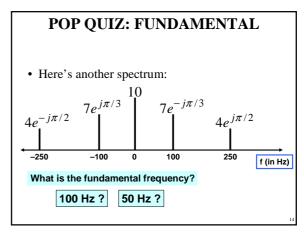
$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

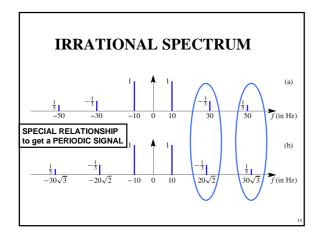
$$f_k = kf_0 \qquad (\omega_0 = 2\pi f_0)$$

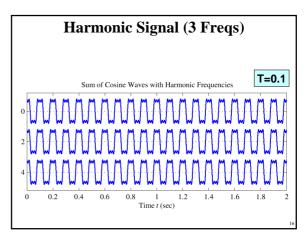
 f_0 = fundamental Frequency (largest)

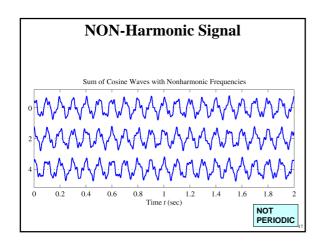
 T_0 = fundamental Period (shortest)



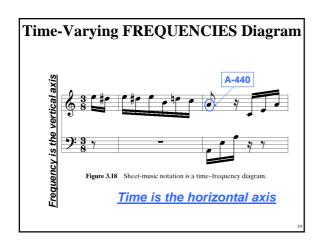


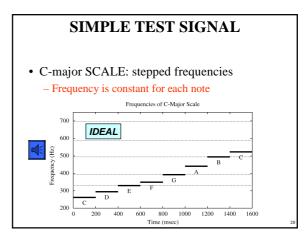


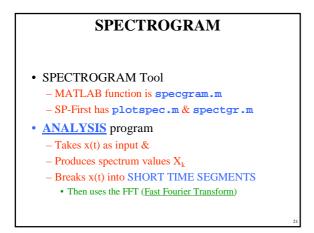


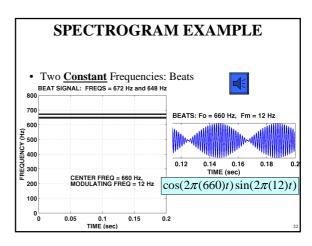


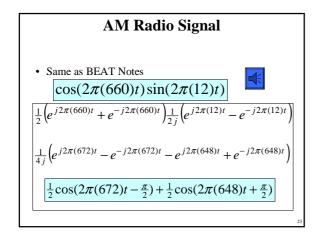
• Now, a much HARDER problem • Given a recording of a song, have the computer write the music • Can a machine extract frequencies? • Yes, if we COMPUTE the spectrum for x(t) • During short intervals

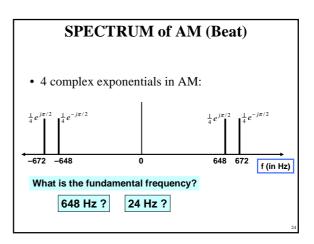




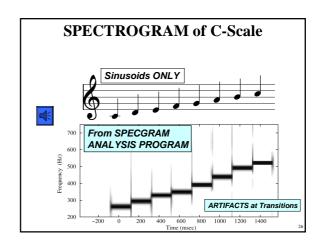


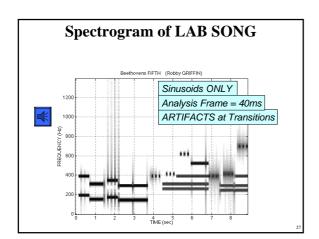


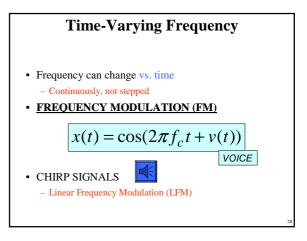




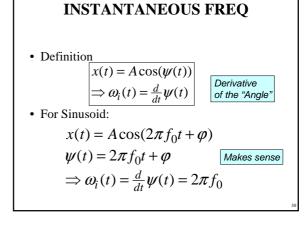
• C-major SCALE: successive sinusoids - Frequency is constant for each note Frequencies of C-Major Scale | Company | Compan







New Signal: Linear FM • Called Chirp Signals (LFM) - Quadratic phase $x(t) = A\cos(\alpha t^2 + 2\pi f_0 t + \varphi)$ • Freq will change LINEARLY vs. time - Example of Frequency Modulation (FM) - Define "instantaneous frequency"



INSTANTANEOUS FREQ of the Chirp

- Chirp Signals have Quadratic phase
- Freq will change LINEARLY vs. time

$$x(t) = A\cos(\alpha t^{2} + \beta t + \varphi)$$

$$\Rightarrow \psi(t) = \alpha t^{2} + \beta t + \varphi$$

$$\Rightarrow \omega_{i}(t) = \frac{d}{dt}\psi(t) = 2\alpha t + \beta$$

