Digital Signal Processing

Prof. Nizamettin AYDIN

naydin@yildiz.edu.tr

http://www.yildiz.edu.tr/~naydin

Digital Signal Processing

Lecture 1

Sinusoids

READING ASSIGNMENTS

- This Lecture: - Chapter 2, pp. 9-17
- Appendix A: Complex Numbers
- Appendix B: MATLAB
- Chapter 1: Introduction

LECTURE OBJECTIVES

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a signal? - It's a function of time, x(t)
 - in the mathematical sense

What's a signal

- A signal can be defined as
- a pattern of variations of a physical quantity that can be manipulated, stored, or transmitted by physical process.
- In the mathematical sense it's a **function** of time, x(t), that carries an information.

TUNING FORK EXAMPLE

₩

- <u>CD-ROM demo</u>
- "A" is at 440 Hertz (Hz)
- Waveform is a SINUSOIDAL SIGNAL
- Computer plot looks like a sine wave
- This should be the mathematical formula:

 $A\cos(2\pi(440)t+\varphi)$

DIGITIZE the WAVEFORM

- *x*[*n*] is a SAMPLED SINUSOID – A list of numbers stored in memory
- Sample at 11,025 samples per second
 - Called the SAMPLING RATE of the A/D
 - Time between samples is
 - 1/11025 = 90.7 microsec
- Output via D/A hardware (at F_{samp})

STORING DIGITAL SOUND

- *x*[*n*] is a SAMPLED SINUSOID – A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

Basic properties of the sine and cosine functions

Property	Equation
Equivalence	$\sin \theta = \cos(\theta - \pi/2)$ or $\cos(\theta) = \sin(\theta + \pi/2)$
Periodicity	$\cos(\theta + 2\pi k) = \cos \theta$, when k is an integer
Evenness of cosine	$\cos(-\theta) = \cos\theta$
Oddness of sine	$\sin(-\theta) = -\sin\theta$
Zeros of sine	$sin(\pi k) = 0$, when k is an integer
Ones of cosine	$\cos(2\pi k) = 1$ when k is an integer.
Minus ones of cosine	$\cos[2\pi(k+\frac{1}{2})] = -1$, when k is an integer.

Number	Equation
1	$\sin^2\theta + \cos^2\theta = 1$
2	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$
3	$\sin 2\theta = 2\sin\theta\cos\theta$
4	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
5	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

