

READING ASSIGNMENTS

- This Lecture:
- Chapter 2, pp. 9-17
- Appendix A: Complex Numbers
- Appendix B: MATLAB
- Chapter 1: Introduction

Digital Signal Processing

Lecture 1

Sinusoids

LECTURE OBJECTIVES

- Write general formula for a "sinusoidal"
waveform, or signal
- From the formula, plot the sinusoid versus time
- What's a signal?
- It's a function of time, $x(t)$
- in the mathematical sense

What's a signal

- A signal can be defined as
- a pattern of variations of a physical quantity that can be manipulated, stored, or transmitted by physical process.
- In the mathematical sense it's a function of time, $\mathrm{x}(\mathrm{t})$, that carries an information.

TUNING FORK EXAMPLE

- CD-ROM demo
- "A" is at 440 Hertz (Hz)
- Waveform is a SINUSOIDAL SIGNAL
- Computer plot looks like a sine wave
- This should be the mathematical formula:

$$
A \cos (2 \pi(440) t+\varphi)
$$

SPEECH EXAMPLE

- More complicated signal (BAT.WAV)
- Waveform $\boldsymbol{x}(\boldsymbol{t})$ is NOT a Sinusoid
- Theory will tell us
$-\boldsymbol{x}(\boldsymbol{t})$ is approximately a sum of sinusoids
- FOURIER ANALYSIS
- Break $\boldsymbol{x}(\boldsymbol{t})$ into its sinusoidal components
- Called the FREQUENCY SPECTRUM

One-dimensional continuous-time signal

- This speech signal is an example of onedimensional continuous-time signal.
- Can be represented mathematically as a function of single independent variable (t).

Two-dimensional stationary signal

- This is a two dimensional signal (an image)
- A spatial pattern not varying in time
- Represented mathematically as a function of two spatial variables (x, y)
- However, videos are timevarying images that involves three independent variables ($\mathrm{x}, \mathrm{y}, \mathrm{t}$)

DIGITIZE the WAVEFORM

- $\boldsymbol{x}[\boldsymbol{n}]$ is a SAMPLED SINUSOID
- A list of numbers stored in memory
- Sample at 11,025 samples per second
- Called the SAMPLING RATE of the A/D
- Time between samples is
- $1 / 11025=90.7$ microsec
- Output via D / A hardware (at $\mathrm{F}_{\text {samp }}$)

STORING DIGITAL SOUND

- $\boldsymbol{x}[\boldsymbol{n}]$ is a SAMPLED SINUSOID
- A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
$-2 \mathrm{X}(16 / 8) \mathrm{X} 60 \mathrm{X} 44100=10.584$ Mbytes

SINE and COSINE functions

SINES and COSINES

- Always use the COSINE FORM

$$
A \cos (2 \pi(440) t+\varphi)
$$

- Sine is a special case:

$$
\sin (\omega t)=\cos \left(\omega t-\frac{\pi}{2}\right)
$$

> SINUSOIDAL SIGNAL
> $A \cos (\omega t+\varphi)$

- FREQUENCY
- Radians/sec
- Hertz (cycles/sec)

$$
\omega=(2 \pi) f
$$

- PERIOD (in sec)
$T=\frac{1}{f}=\frac{2 \pi}{\omega}$
- AMPLITUDE
- Magnitude
- PHASE

EXAMPLE of SINUSOID

- Given the Formula

$$
5 \cos (0.3 \pi t+1.2 \pi)
$$

- Make a plot

PLOT COSINE SIGNAL

$$
5 \cos (0.3 \pi t+1.2 \pi)
$$

- Formula defines A, ω, and ϕ

$$
\begin{aligned}
& A=5 \\
& \omega=0.3 \pi \\
& \varphi=1.2 \pi
\end{aligned}
$$

PLOTTING COSINE SIGNAL from the

 FORMULA$$
5 \cos (0.3 \pi t+1.2 \pi)
$$

- Determine period:

$$
T=2 \pi / \omega=2 \pi / 0.3 \pi=20 / 3
$$

- Determine a peak location by solving

$$
(\omega t+\varphi)=0 \quad \Rightarrow(0.3 \pi t+1.2 \pi)=0
$$

- Zero crossing is T/4 before or after
- Positive \& Negative peaks spaced by T/2

Basic properties of the sine and cosine functions

Property	Equation
Equivalence	$\sin \theta=\cos (\theta-\pi / 2)$ or $\cos (\theta)=\sin (\theta+\pi / 2)$
Periodicity	$\cos (\theta+2 \pi k)=\cos \theta$, when k is an integer
Evenness of cosine	$\cos (-\theta)=\cos \theta$
Oddness of sine	$\sin (-\theta)=-\sin \theta$
Zeros of sine	$\sin (\pi k)=0$, when k is an integer
Ones of cosine	$\cos (2 \pi k)=1$ when k is an integer.
Minus ones of cosine	$\cos \left[2 \pi\left(k+\frac{1}{2}\right)\right]=-1$, when k is an integer.

Some basic trigonometric identities

Number	Equation
1	$\sin ^{2} \theta+\cos ^{2} \theta=1$
2	$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$
3	$\sin 2 \theta=2 \sin \theta \cos \theta$
4	$\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
5	$\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

Sampling and plotting sinusoids

- Plot the following function

$$
20 \cos (2 \pi(40) t-0.4 \pi)
$$

- Must evaluate $x(t)$ at a discrete set of times, $t_{n}=n T_{s}$, where n is an integer

$$
x\left(n T_{s}\right)=20 \cos \left(80 \pi n T_{s}-0.4 \pi\right)
$$

- T_{s} is called sample spacing or sampling period
- Matlab program

