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Time Domain Methods in Speech Processing b o

Pitch Detection, Voiced/Unvoiced/Silence Detection, Gain Estimation, Vocal
Tract Parameter Estimation, Glottal Pulse Shape, Radiation Model

General Analysis Model Overview
speech or music
Axt)
S h > Pitch Period, T[n] representation formants
s[n] peec > Glottal Pulse Shape, g[n] speech, x[n] Signal of speech reflection coefficients
. ———> Voiced Amplitude, Aj[n] —_— Procassing voiced-unvoiced-silence
Analysis |——— viuisin switch Soands of anguage
|5 Unvoiced Amplitude, Ay[n] « Time domain processing ke \dent\gﬁca?\an
Model | 5 VocalTractIR, v[n] ) P i
Radiation Characteristic, r{n] — direct operations on the speech waveform emolions
« Frequency domain processing
« All analySiS parameters are time—varying at rates direct operations on a spectral representation of the signal

commensurate with information in the zero crossing rate

x[n) level crossing rate
paramete IS, system energy

. . . . ut relati
* We need algorithms for estimating the analysis eeeneen

+ Simple processing
parameters and their variations over time « Enables various types of feature estimation

Basics Fundamental Assumptions
v . . . .
Vedeld 071 71 8 kHz sampled speech - Properties of the speech signal change relatively
B Al A al d_alala a, - v - e )
« Properties of speech change with time slowly with time (5-10 sounds per second)
A — Excitation goes from voiced to unvoiced — Over very short (5-20 msec) intervals
- uis Eg%zag?gghigg varies with the sound . uncgnainty que to small amount of data, varying pitch,
— Pitch varies within and across voiced varying amplitude
— ;‘;fi'gddss of silence where background — Over medium length (20-100 msec) intervals
signals are seen « uncertainty due to changes in sound quality, transitions
L N between sounds, rapid transients in speech
offioeon Ty sl o ~ Over ong (10500 mse) nera
e s s methods ﬂ?at enable us 'ﬁ) P 9 « uncertainty due to large amount of sound changes
YT T measure/estimate speec o i i i i
| representations reliably and There is always uncertainty in short time
- ***_j_*w‘-‘v“vf: accurately

measurements and estimates from speech signals
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Compromise Solution

 Short-time processing methods
— Short segments of the speech signal are isolated and
processed as if they were short segments from a
sustained sound with fixed (non-time-varying)
properties
« This short-time processing is periodically repeated for the
duration of the waveform

« These short analysis segments, or analysis frames almost
always overlap one another

« The results of short-time processing can be a single number
(e.g., an estimate of the pitch period within the frame), or a set
of numbers (an estimate of the formant frequencies for the
analysis frame)

« The end result of the processing is a new, time-varying
s_equelnce that serves as a new representation of the speech
signal

Frame-by-Frame Processing in Successive Windows
« Frame 1: samples0,1,..., L -1

« Frame 2: samplesR, R +1,..., R+ L —1

« Frame 3: samples 2R,2R +1,...,.2R + L -1

« Frame 4: samples 3R,3R +1,....3R + L —1

Frames and Windows

O

u.“lh lﬂ‘h
LA VAN AL

w[560 — m] w[1280 — m]

WY

0 240 480 720 960 1200 1440 1680 1920
time in samples (m)

» F,=16000 samples/second

» L =641 samples (equivalent to 40 msec frame (window) length)
» R =240 samples (equivalent to 15 msec frame (window) shift)
+ Frame rate of 66.7 frames/second
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Frame-by-Frame Processing in Successive Windows
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Frame 1

Frame 2

I Frame 3

Framed ———+

Frame 5 —

*  75% frame overlap, frame length=L, frame shift=R=L/4
— Framel={x[0],x[1],....x[L-1]}
— Frame2={x[R],x[R+1],....x[R+L-1]}
— Frame3={x[2R],x[2R+1],...,x[2R+L-1]}

Frame-by-Frame Processing in Successive Windows

%“A‘J ’\ “n\J vﬂk M{Av J‘\ﬁwﬂ" ﬂunwﬂvanlvﬂ\lﬁ'nuhwmvﬂkwﬂ\w
L— Frame 1 —*
i

Frame 3 —*

Frame 4 —|
+ Speech is processed frame-by-frame in overlapping intervals
until entire region of speech Is covered by at least one such
frame
— Results of analysis of individual frames used to derive model
parameters invsome manner
— Representation goes from time sample x[n], n = ---,0,1,2,--t0
parameter vector f[m], m = 0,1,2,--- where n is the time index
and m is the frame index.

Short-Time Processing

speech speech representation,
waveform, x[n] short-time fim]
— f—.
processing

» X[n] = samples at 8000/sec rate
— e.g., 2 seconds of 4 kHz bandlimited speech,
e x[n], 0 < n < 16000
« fIm]l = {film], fo[m], ---
100/sec rate, 1 <m <200
— L is the size of the analysis vector,

« e.g,. 1 for pitch period estimate, 12 for autocorrelation
estimates, etc)

, fu[m]} = vectors at



Generic Short-Time Processing

o,
=,

x[n] T( ) Tix(n]) W[ n]

window sequence
(usually finite length)

linear or non-linear
transformation

0= D TGlmhw (7 —m]

m=- n=n

* Qg is asequence of local weighted average
values of the sequence T(x[n]) attimen =7

Computation of Short-Time Energy

« Window jumps/slides across sequence of squared values, selecting interval
for processing

« What happens to E;; as sequence jumps by 2, 4, 8, ..., L samples
—  Ej is alowpass function
« 5o it can be decimated without loss of information;
— why is E,lowpass?
« Effects of decimation depend on L;
if L is small, then Ej is a lot more variable than if L is large
« window bandwidth changes with L

Short-Time Energy

short time energy

] n] Ei=E|
(P hln]
Fy 5 Fo /R

« Serves to differentiate voiced and unvoiced sounds in speech from silence
(background signal)
« Natural definition of energy of weighted signal is:
sum or squares of portion of signal

Eq = Z [x[mlwla — ml]*

m=—co
« Concentrates measurement at sample 7, using weighting #w[#a — m]
Eq= Z X2[m]W2[A —m] = Z x2[m] Al — m]
m=—co m=—co
h[n] = w2[n]
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Short-Time Energy

» The long term definition of signal energy

E= Z x2[m]

m=—oo
 There is little or no utility of this definition for
time-varying signals
En =Yt o oax?[m]=x?[A—L+1]+ -+ x?[A]
« Short-time energy in vicinity of time f
T(x) = x?
wnl=1 0<n<L-1
=0 otherwise

Effects of Window

Qn = T(x[n]) = W[n]|n=ﬁ =x'[n] * W[n]|

» W[n] serves as a lowpass filter on T'(x[n]) which
often has a lot of high frequencies (most non-linearities
introduce significant high frequency energy—think of
what (x[n] - x[n]) does in frequency)

» Often we extend the definition of Q4 to include a pre-
filtering term so that x[n] itself is filtered to a region of
interest

n=n

0 linear T‘M”DI o i =0l

Short-Time Energy Properties

« Depends on choice of h[n], or equivalently,
window w|n]

— If w[n] duration is very long and constant amplitude
(w[n]=1, n=0,1,...,L-1), E; would not change much
over time, and would not reflect the short-time
amplitudes of the sounds of the speech

» Very long duration windows correspond to narrowband
lowpass filters

— We want E; to change at a rate comparable to the
changing sounds of the speech

« This is the essential conflict in all speech processing,

— namely we need short duration window to be responsive to rapid
sound changes, but short windows will not provide sufficient
averaging to give smooth and reliable energy function



Windows

« Consider two windows, w[n]

12 - —Rectangular window (RW):
SRR R R R R AR RA R * h[n]=1,0<n<L-land 0
otherwise

« gives equal weight to all L samples
in the window (n,...,n-L+1)

& —Hamming window (HW,
raised cosine window):
+ h[n] = 0.54-0.46cos(2zn/(L-1)), 0
I, <n<L-1and 0 otherwise
l « gives most weight to middle
L ! samples and tapers off strongly at
Sl e n the beginning and the end of the
L = 21 samples window

Frequency Responses of RW and HW

Log magnitude response of RW and HW
— Bandwidth of HW is approximately
twice the bandwidth of RW
— Attenuation of more than 40 dB for HW
outside passhand, versus 14 dB for RW
— Stopband attenuation is essentially
independent of L, the window duration

« increasing L simply decreases window
bandwidth

L needs to be
« larger than a pitch period
— otherwise severe fluctuations will occur in E,,
« but smaller than a sound duration

— otherwise E, will not adequately reflect the
changes in the speech signal

There is no perfect value of L, since a pitch period can be as short as 20 samples (500 Hz ata 10
kHz sampling rate) for a high pitch child or female, and up to 250 samples (40 Hz pitch at a 10 kHz
sampling rate) for a low pitch male; a compromise value of L on the order of 100-200 samples for a
10 kHz sampling rate is often used in practice

Voiced/unvoiced detection

» Methods to distinguish between voiced and
unvoiced segments

— Short-time energy
— Short-time magnitude

— Short-time zero crossing

Copyright 2000 N. AYDIN. All rights
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Window Frequency Responses

* Rectangular window
X sin(w—LT) Tkt
_ H(eJ“’T) = _sin(é) e /92
— First zero occurs at f=F/L=1/(LT) (or w=(2x)/(LT))
» nominal cutoff frequency of the equivalent lowpass filter
» Hamming window
— Wyln] = 0.54Wg[n] — 0.46 = cos(i%l) wgln]

— can decompose Hamming Window FR into
combination of three terms

Window Frequency Responses

Rectangular Windows Hamming Windows
L=21,41,61,81,101 L=21,41,61,81,101
FOYYYYY 1o

FOYYYYYYy

'W']“fmm,vrrmymm‘qm : \}v'Yrrr,‘rmTv‘,WmTw
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Short-Time Energy

xnl (x[n])? | Lowpass E, E;=

2 Ey =i
() Filter LR
win]

F, Fy F, FJ/R

Short-time energy computation:
o

o= z [x[m]®[a - m]]’

m=—co

For L-point rectangular window,

wlm] =1, m=0,1,,L—1
Giving



Short-Time Energy using RW/HW

! What She Said / -- Rectangular Window, E_%

{Wnat She Said / — Hamming Window, £

+ AsL increases, the plots tend to converge (however you are smoothing sound
energies)

« Short-time energy provides the basis for distinguishing voiced from unvoiced speech

regions, and for medium-to-high SNR recordings, can even be used to find regions of
silence/background signal

Recursive Short-Time Energy

e u[n —m — 1] implies the conditionn —m —1 > 0 or
m < n—1giving
n-1
= Z (1 -a)x*mla™™ ™ = (1-a) (x*[n—1] + ax?[n—2] + )
 For the index n — 1 we have
n-2

a?ln—-1] = Z (1 —a)x?[mla™™ 2 =(1—a) (x*[n— 2] + ax?[n— 3] + )

» Thus giving the relationship

o%[n] = ac?[n—1] + x%[n—1](1 - a)

» This defines an Automatic Gain Control (AGC) of the
form

61l =5

Recursive Short-Time Energy

o?[n] = ac?[n —1](1 — a)x?[n — 1]

(72[1]]
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Short-Time Energy for AGC

« Can use an IIR filter to define short-time

energy, e.g.,
— Time-dependent energy definition
5 Ym=—c X*[m]h[n —m]
o°[n] = =
m=o hlm]
— Consider impulse response of filter of form
hln] = a" tuln -1l =a™' nx1
=0 n<l1

o?[n] = Z (1 — a)x?[m]a™ ™ uln —m — 1]

m=-—oo

Recursive Short-Time Energy

a%[n] = x%[n] = h[n]
hln] = (1 - @)a™ 'uln — 1]
a?z]) = X‘[z] X H|z]

H(z) = Z h[n]z™" = Z (1-a)a™ uln—1]z"

Z(l —a)a™ 1z 7

m=n-—1

H(z) = Z (1 —a)amz=m+D) = Z (1—a)z ta™z™™
m=0 m=0

SN mm L1 o
=(1-a)z 120{ zMm=1-a)z 11—a2’1=XZ[Z]

m=0

o?[n] = ac?[n—1](1 — a)x?*[n—1]

Recursive Short-Time Energy

(a) Exponential Window; o = 0.9

amplitude
o
s
£

ziN

20 30 40 50 60 70 80 90 100
time index n

(b) Discrete-Time Fourier Transform

@
3
g1 \
E s
g -2 T
o —
g —_
0 o1 02 03 04 05 06 07 08 09 1

normalized frequency o /



Use of Short-Time Energy for AGC

» Variance estimate, « = 0.9

Short-Time Magnitude

+ Short-time energy is very sensitive to large
« signal levels due to x2[n] terms

— Consider a new definition of pseudo-energy based on
average signal magnitude (rather than energy)

> lxlml|wli — m]

— Weighted sum of r?\na_gnﬁudes, rather than weighted sum of
squares
Xinl ,—|| x| IW‘ M; :JLI"L::'
PR SR ey WG gy
. ICom)putanon avoids multiplications of signal with itself (the squared
erm,

Short Time Energy and Magnitude-Rectangular Window

1hat She Said /- Rectangular Window, £, {What She Said | - Recianguiar Window, M,

L=51 =51

=101 L=101
r i
= =201 § J[\L‘j\ =201
: ]

=401 T=401

0 [ 1 T | 05 1 15
Tiw i Seseeds Toein Seserds

« Differences between E, and M, noticeable in unvoiced regions
« Dynamic range of M, ~ square root (dynamic range of E,)
level differences between voiced and unvoiced segments are smaller
E, and M, can be sampled at a rate of 100/sec for window durations of 20 msec or so
efficient ion of signal itude
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Use of Short-Time Energy for AGC

Short-Time Magnitudes

/What She Said / -- Rectangular Window, JM;’

/ What She Said / -- Hamming Window, M 5

ShortTime Magnitude

]
Tinein Seconds

15

L=51 L=51
=101 L=101
H
L=201| £ L=201
a
fﬁ\ i:\ L=401] =401
i

5 T 5
Time in Seconds

Short Time Energy and Magnitude-Hamming Window

| What She Said / - Hamming Window, E;;

| What She Said /- Hamming Window, A/,

Shont-Time Energy

Time in Seconds

L=51 L=51
L=101 L=101
z
o
£ L=201
=
2
@
L=401

Time in Seconds



Other Lowpass Windows

Can replace RW or HW with any lowpass filter
Window should be positive since this guarantees E,
and M,, will be positive

FIR windows are efficient computationally since they
can slide by R samples for efficiency with no loss of
information (what should R be?)

Can even use an infinite duration window if its z-
transform is a rational function, i.e.,

hln]=a™, n>0, 0<a<1

h[n] =0, n<o

H(z) = —

1-az71

|z| > |al

Short-Time Average ZC Rate

« Energy for voiced speech tends to concentrate
below 3 KHz, whereas for unvoiced speech
energy is found at higher frequencies

« Since high frequencies imply high zero-crossing
rates, one can discriminate both types of
segments from their zero-crossing rate

— As before, split the speech signal x[n] into short
blocks (i.e., 10-20 ms)

— Calculate the zero-crossing rate within each block

— Determine a maximum likelihood threshold

Short-Time Average ZC Rate

+ Speech signals are broadband signals and the interpretation of
average zero-crossing rate is therefore much less precise.

— However, rough estimates of spectral properties can be obtained
using a representation based on the shorttime average zero-
crossing rate.

» ZC Rate can be defined as

3

Za ! Z |sgn{x[m] — sgn{x[m — 1]}|W [A — m]

f =
2Le“m=ﬁ—l_+1

_J1 x=0

where sgn{x[n]} = {_1 <0

Win] = 1 0<sn<L-1
0 otherwise

Copyright 2000 N. AYDIN. All rights
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Other Lowpass Windows

* This simple lowpass filter can be used to implement E,,
and M,, recursively as:

E, = aE,_1 + (1 —a)x?[n] (short-time energy)
M, = aM,_, + (1 — a)x[n] (short-time magnitude)
» Need to compute E, or M, every sample and then
down-sample to 100/sec rate

 Recursive computation has a non-linear phase, so delay
cannot be compensated exactly

Short-Time Average ZC Rate

* Zzero crossing

successive samples have different
algebraic signs

zero crosr.\r\194

* The rate at which zero crossings occur is a simple measure of
the frequency content of a signal.

« This is particularly true of narrowband signals.

« For example, a sinusoidal signal of frequency F,, sampled at
arate F, has F,/ F, samples per cycle of the sine wave.

+ Each cycle has two zero crossings so that the long-time
average rate of zero-crossings is

Z=2F,lF,, crossings/sample
» The average zero-crossing rate gives a reasonable way to
estimate the frequencyof a sine wave.

40

Short-Time Average ZC Rate

* The short-time average zero-crossing rate has the
same general properties as the short-time energy
and the short time average magnitude.

Lowpass | Z3=7Z,|,_;
Filter -
Wwn]

[n] First
" I } ] [)lill'rrcmc | |
F F, F, F, FJR
» The computation of Zj is done by checking
samples in pairs to determine where the zero-

crossings occur and then the average is computed
over L consecutive samples.

a2



Zero Crossing Normalization

* The formal definjtion of Z; is:

1 n
Za=12 = ﬂm_ﬁz;”lsgn{x[m] —sgn{x[m — 1]}/
is interpreted as the number of zero crossings
per sample.
» For most practical applications, we need the rate
of zero crossings per fixed interval of M

samples, which is
Zy = zyM = rate of zero crossings per M sample interval

Zero Crossing Normalization

For a 1000 Hz sinewave as input, using a 40 msec
window length (L), with various values of sampling rate
(F,), we get the following:

Fs L Z M In
8000 320 1/4 80 20
10000 400 1/5 100 20
16000 640 1/8 160 20

» Thus we see that the normalized (per interval) zero
crossing rate, z,, is independent of the sampling rate and
can be used as a measure of the dominant energy in a
band.

Zero Crossing Rate Distributions

f‘ waceo | * Unvoiced Speech:
V

The dominant energy
component is at about 2.5
kHz

wee Lo Voiced Speech:

The dominant energy
component is at about 700
Hz

v

|
{
{
i
6 10 20 30 40 50 70 80
NUMBER OF ZERO CROSSINGS PER 10 msec INTERVAL

« For voiced speech, energy is mainly below 1.5 kHz

« For unvoiced speech, energy is mainly above 1.5 kHz

+ Mean ZC rate for unvoiced speech is 49 per 10 msec
interval

+ Mean ZC rate for voiced speech is 14 per 10 msec
interval

Copyright 2000 N. AYDIN. All rights
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Zero Crossing Normalization

* Thus, for an interval of 7 sec., corresponding to
M samples we get

T
zy =z1M; M =1F, ==
Ts

 Zero crossings/10 msec interval as a function
of sampling rate:

- F; =10000 Hz; T = 100 usec; T = 10 msec; M = 100 samples
- F; =8000Hz; T =100 usec; T =10 msec; M =80 samples
- F; = 16000 Hz; T = 100 usec; T = 10 msec; M = 160 samples

44

Zero Crossing and Energy Computation

w[200 — m! Z4/0.564 w1100 — m E;#/0.033
—= 7
~
N

* Hamming window
with duration

5 - L=201 samples

A b (12.5 msec at

F.=16 kHz)

AW
AR S
WV,

0 500 1000 1500 2000
time in samples (71)

@[400 —m] _Z;/0.54 51200 — | Ea/0.026

Hamming window

B gt k. with duration
FOE = i L=401 samples
A r&l{f‘.; (25 msec at F,=16
) kHz)

0 500 1000 1500 2000
time in samples (7t)
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Zero Crossing Rates for Speech

» Some examples of average ZC rate measurements:

E M [y i a stony «  The duration of the averaging
) ‘ | ] window is 15 msec
“r \ ( 150 samples at 10 kHz

\ [
201 \ sampling rate
Mol o ’ .
o P W UWAE + The output is computed 100
times/sec
— window moved in steps of 100
samples.
+ Note that just as in the case of
short-time energy and average
——  magnitude, the short-time
AT S0, average ZC rate can be
sampled at a very low rate.

Although the ZC rate varies
W considerably, the voiced and
unvoiced regions are quite

) 'Jf prominent
os

TIME I SECON

48



Short-Time Energy, Magnitude, ZC

Summary of Simple Time Domain Measures

------ () [ 7 HLabD e ©
s(n) : L’_lri};arr y x(n 0] (x[n]) B

Q=Y TGImDwla-m]

« Energy:
a
En= Z X2 [m]w[A —m]
m=Ai-L+1
can downsample Ej; at rate commensurate with window bandwidth
* Magnitude:

7
My = x[m]Ww[f —m]
m:ﬁZL+1
« Zero Crossing Rate:

Za=m=g; Y. lsgnxim - sgntelm ~ 1F[ - m]

m=n-L+1

Periodic Signals

+ For a periodic signal we have (at least in theory)
@[P] = @[0]so the period of a periodic signal
can be estimated as the first non-zero maximum
of @[k]

— This means that the autocorrelation function is a

good candidate for speech pitch detection
algorithms

— It also means that we need a good way of measuring
the short-time autocorrelation function for speech
signa

Copyright 2000 N. AYDIN. All rights
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Issues in ZC Rate Computation

« For zero crossing rate to be accurate, need zero

DC in signal

— need to remove offsets, hum, noise

« use bandpass filter to eliminate DC and hum

+ Can quantize the signal to 1-bit for computation
of ZC rate
Can apply the concept of ZC rate to bandpass
filtered speech to give a crude spectral estimate
in narrow bands of speech

— kind of gives an estimate of the strongest frequency
in each narrow band of speech

Short-Time Autocorrelation

» The autocorrelation function of a discrete-time deterministic
signal:
o
okl = ) xlmlx{m + k]
=—00

 For arandom or periodic signal'

olk] = Lan& TR Z x[m]x[m + k]
 If x[n] = x[n + P], then Q)[k] Q)[k + P]

the autocorrelation function preserves periodicity
Properties of @[k]:

@[k] is even, @[k] = O[—k]

@[k] is maximum at k = 0, |@[k]| < @[0], Vk
— @[0] is the signal energy or power (for random signals)

Short-Time Autocorrelation

» A reasonable definition for the short-time
autocorrelation is:

Ralk] = Z x[m]W[Ai — m]x[m + k]W[A — k —m]

— Select a segment of speech by windowing
Compute deterministic autocorrelation of the
windowed speech

Ralk] = Ra[—k] — symmetry

= Z xmlx[m + k][R — m]W[A — k —m]

m=—o



x[n]

Short-Time Autocorrelation

Analysis R, [K]

X Window
wiln]

Delay by
k Samples | x[n—k]

Define filter of the form :
Wy = W[AIW[A + k]
This enables us to write the short-time autocorrelation in the form:
Rilk] = x[m]x[m — k]Ww[A — m]
py

The value of W [k] at time 7 for the ki lag is obtained by filtering the
sequence x[7i]x[A — k] with a filter with impulse response Wy [71]

Short-Time Autocorrelation

wli —m] ()
e ‘/\Mm \MA \(ﬁ\v “ ”p,f ;
[ [V f ] m
I & y y i+ LM v
[+ mu/[m o
N (M A d :
n
0 ‘VN w L-1
z[i +m + kJw'[m + k] ©
A\, A /\n‘ A
1 v \4 i T O
k ol l L-1-k L-1

Examples of Autocorrelations

Autocorrelation function for (a) and (b) voiced speech, and

(c) unvoiced speech, using a Hanning window with L = 401

« Much less clear
estimates of periodicity
since HW tapers signal
so strongly, making it

A n | look like a non-periodic

VYTV T signal

» No strong peak for

unvoiced speech

ki\ n Alln AR
‘:VU NV AR A
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Short-Time Autocorrelation

00

Ralk] = Z X[m]W[R — m]x[m + kWA — k —m]

w[n+k]

win] |

i B

n- N+1 n+k-N+1 n n+k m

« L points used to compute R;[0]
+ L-1 points used to compute R;[k]

J;w1 W Q

Examples of Autocorrelations

< Autocorrelation function for (a) and (b) voiced speech, and (c)
unv0|ced speech, using a rectangular window with L = 401

w |« Autocorrelation peaks
occuratk =72, 144, .
) => 140 Hz pitch

@(P)<®(0) since
n windowed speech is not
perfectly periodic
« Over a 401 sample
window (40 msec of
signal), pitch period
changes occur,
so P is not perfectly
| defined

o
]
8
H
g

Voiced (female) L=401 (magnitude)

0 005 01 015 02 025 03 035 04 045 05
nomalized frequency

10



Voiced (female) L=401 (log mag)

"o o0s o1 o015 0z 025 03 035 04 045 05 ¥
nomalized frequency
61
0
001
§
g o
0.01
002 . \ , , \ .
50 100 150 200 250 300 350 400
018
01 B
T 005 q
o
208 . . . , . L
50 100 150 200 250 300 350 400
tirmve index
g-20
£
H
§-00
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Effects of Window Size

Thvy e

An imJ)ortant issue is how L
should be chosen to give a
good indication of
periodicity.
— small L
+ pitch period almost constant in
window
large L
« clear periodicity seen in
window

as k increases, the number of
window points decrease,
reducing the accuracy and size
of R,(k) for large k => have a
taper of the type R(k)=1-k/L,
|k|<L shaping of autocorrelation
(this is the autocorrelation of
size L rectangular window)

Allow L to vary with
detected pitch periods

— sothatat least 2 full periods are
included

Copyright 2000 N. AYDIN. All rights

reserved.
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Modified Autocorrelation

Another approach is to allow the window length to adapt to
match the expected pitch period.

The modified short-time autocorrelation function is defined as
Ralk] = Z [+ m + k] @y [mlx[m + k] [m + k]
M=
— where W, : standard L-point window, w,: extended window of
duration L+K samples, where K is the largest lag of interest
Wy[m] = wi[-m] and W,[m] = W,[-m]
— For rectangular windows we choose the following:

Wwilm] =1, 0<m<L-1
Wylm] =1, 0<m<L-1+4+K
— Giving
L-1
Eﬁ[k]:Zx[ﬁ+m]x[ﬁ+m+k], 0<k<K
m=0

— Always use I:samples in computation of R;[k] vk
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Examples of Modified Autocorrelation

« The cross-correlation (not autocorrelation) function for the two
different finite length segments of speech, x[7 + m]w;[m] and
x[A + m]Ww,[m].

« Thus Rj[k] has the
properties of a cross-
correlation function,
not an autocorrelation
function.

« For example,
Ra[k] # Ry [k].

« Nevertheless, Rj[k]
will display peaks at
multiples of the
period of a periodic
signal and it will not
display a fall-off in
amplitude at large
values of k.

Examples of Modified Autocorrelation

1

» The modified
autocorrelation
functions
corresponding to

0 —  the examples of

s [\ * | Figure in slide 58.
AATLA A A Non ﬂ A, A\fﬂ‘\} e Because for L =

V VYV VvV =V 401 the effects of

waveform variation

dominate the
tapering effect in

Figure in slide 58,

the two figures

look much alike.

ts
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Short-Time Average Magnitude Difference Function (AMDF)

« Belief that for periodic signals of period P, the

difference function
d[n] = x[n] — x[n — k]
will be approximately zero for k = 0, +P, 2P, -
— For realistic speech signals, d[n] will be small at k = P,
but not zero.

+ Based on this reasoning, the short-time AMDF is

defined as:

valkl= ) |x[A+m] @lm] - [ +m — KIy[m — ]

— with w, [m] and W, [m] being rectengular windows.

Examples of Modified Autocorrelation

a[m] wy [ —m) (a)
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Examples of Modified Autocorrelation

ts
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» A comparison with
the Figure in the slide
59 shows that the
difference is more
apparent for smaller

\ A [\ o values of L.

nalla aln alaafin. It is clear that the

VWVVWVV VVEvy peaks are less than

- the k = 0 peak only

because of deviations
from periodicity over
the interval n to n+L-
1+K..

Short-Time Average Magnitude Difference Function (AMDF)

« If both windows are the same length, then y;[k] is similar
to the short-time autocorrelation

« If W, [m] is longer than W, [m], then y[k] is similar to
the modified short-time autocorrelation (or covariance)
function.

« In fact it can be shown that
valkl = V2B[k] |Ral0] — Ralk]

where B[k] varies between 0.6 and 1.0 for different
segments of speech,

but does not change rapidly with k for a particular
speech segment

]1/2

Copyright 2000 N. AYDIN. All rights
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Short-Time Average Magnitude Difference Function (AMDF)

Implemented with subtraction , addition, and absolute value
operations,

— in contrast to addition and multiplication operations for the

autocorrelation function.

With floating point arithmetic, where multiplies and adds
take approximately the same time,

— about the same time is required for either method with the same

window length.
However, for special purpose hardware, or with fixed point
arithmetic, the AMDF appears to have the advantage.

— In this case multiplies usually are more time consuming and

furthermore either scaling or a double precision accumulator is
required to hold the sum of lagged products.

For this reason the AMDF function has been used in
numerous real-time speech processing systems.

Summary

«  Short-time parameters in the time domain:

Short-time energy

Eq = x2[m]W[i — m]
= =

Short-time average magnitude

My = x[m]w[A —m]
e
Short-time zero crossing rate

Zy=m =g AZ Isgntx(m] - sgn(x[m — 1)|[7 ~ m]
mfLe1
Short-time autocorrelation
Ralk] = Z x[ml[i - mxfm + k][ - k - m]

Modified short-time autocorrelation

Ralk] = Z X[ + m + k] @, [m]x[m + k], [m + k]

Short-time average magnitude difference function

Yalk] = Z %[ + m] % [m] — x[A +m — k], [m — k]|

Copyright 2000 N. AYDIN. All rights

reserved.

AMDF for Speech Segments

10
(a)
0.0
1.0
(b)
0.0
1.0
A e AMAMA y ;
(c)
o) N O S R B O O [ 5 o L i P O T OO L s O 8
50 100 150 200 250
LAG k

13



