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Time Domain Methods in Speech Processing

Digital Audio and Speech Processing
(Sayısal Ses ve Konuşma İşleme)

General Synthesis Model

• Log Areas, Reflection
Coefficients, Formants, Vocal
Tract Polynomial, Articulatory
Parameters, …

• Pitch Detection, Voiced/Unvoiced/Silence Detection, Gain Estimation, Vocal 
Tract Parameter Estimation, Glottal Pulse Shape, Radiation Model
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General Analysis Model

• All analysis parameters are time-varying at rates

commensurate with information in the 

parameters;

• We need algorithms for estimating the analysis

parameters and their variations over time
3

Overview

• Time domain processing

– direct operations on the speech waveform

• Frequency domain processing

– direct operations on a spectral representation of the signal

• Simple processing

• Enables various types of feature estimation
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Basics

• 8 kHz sampled speech 
– bandwidth < 4 kHz

• Properties of speech change with time
– Excitation goes from voiced to unvoiced

– Peak amplitude varies with the sound
being produced

– Pitch varies within and across voiced
sounds

– Periods of silence where background 
signals are seen

• The key issue is whether we can
create simple time-domain processing
methods that enable us to
measure/estimate speech
representations reliably and
accurately
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Fundamental Assumptions

• Properties of the speech signal change relatively

slowly with time (5-10 sounds per second)

– Over very short (5-20 msec) intervals

• uncertainty due to small amount of data, varying pitch, 

varying amplitude

– Over medium length (20-100 msec) intervals

• uncertainty due to changes in sound quality, transitions 

between sounds, rapid transients in speech

– Over long (100-500 msec) intervals

• uncertainty due to large amount of sound changes

• There is always uncertainty in short time

measurements and estimates from speech signals
6
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Compromise Solution

• Short-time processing methods 
– Short segments of the speech signal are isolated and 

processed as if they were short segments from a 
sustained sound with fixed (non-time-varying) 
properties

• This short-time processing is periodically repeated for the
duration of the waveform

• These short analysis segments, or analysis frames almost
always overlap one another

• The results of short-time processing can be a single number 
(e.g., an estimate of the pitch period within the frame), or a set 
of numbers (an estimate of the formant frequencies for the 
analysis frame)

• The end result of the processing is a new, time-varying 
sequence that serves as a new representation of the speech 
signal
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Frame-by-Frame Processing in Successive Windows

• 75% frame overlap, frame length=L, frame shift=R=L/4
– Frame1={x[0],x[1],…,x[L-1]}

– Frame2={x[R],x[R+1],…,x[R+L-1]}

– Frame3={x[2R],x[2R+1],…,x[2R+L-1]}

– …

8

Frame-by-Frame Processing in Successive Windows

• Frame 1: samples 0,1,..., L −1

• Frame 2: samples R, R +1,..., R + L −1

• Frame 3: samples 2R,2R +1,...,2R + L −1

• Frame 4: samples 3R,3R +1,...,3R + L −1
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Frame-by-Frame Processing in Successive Windows

• Speech is processed frame-by-frame in overlapping intervals 
until entire region of speech is covered by at least one such 
frame
– Results of analysis of individual frames used to derive model 

parameters invsome manner

– Representation goes from time sample 𝑥 𝑛 , 𝑛 = ⋯ , 0,1,2,⋯to 
parameter vector 𝐟 𝑚 , 𝑚 = 0,1,2,⋯ where n is the time index 
and m is the frame index.

10

Frames and Windows

• Fs = 16000 samples/second

• L = 641 samples (equivalent to 40 msec frame (window) length)

• R = 240 samples (equivalent to 15 msec frame (window) shift)

• Frame rate of 66.7 frames/second
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Short-Time Processing

• x[n] = samples at 8000/sec rate
– e.g., 2 seconds of 4 kHz bandlimited speech,

• x[n], 0 ≤ n ≤ 16000

•  𝑓 𝑚 = {𝑓1 𝑚 ,𝑓2 𝑚 , ⋯ , 𝑓𝐿 𝑚 } = vectors at 
100/sec rate, 1 ≤ m ≤ 200
– L is the size of the analysis vector, 

• e.g,. 1 for pitch period estimate, 12 for autocorrelation
estimates, etc)

12
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Generic Short-Time Processing

• Type equation here.

𝑄  𝑛 =   

𝑚=−∞

∞

𝑇 𝑥 𝑚  𝑤 [ 𝑛 − 𝑚]

𝑛=  𝑛

• 𝑄  𝑛 is a sequence of local weighted average 

values of the sequence T(x[n]) at time 𝑛 =  𝑛
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Short-Time Energy

• The long term definition of signal energy

𝐸 =  

𝑚=−∞

∞

𝑥2[𝑚]

• There is little or no utility of this definition for 
time-varying signals

𝐸  𝑛 =  𝑚=  𝑛−𝐿+1
 𝑛 𝑥2[𝑚] = 𝑥2  𝑛 − 𝐿 + 1 + ⋯ + 𝑥2[  𝑛]

• Short-time energy in vicinity of time  𝑛

𝑇 𝑥 = 𝑥2

 𝑤 𝑛 = 1 0 ≤ 𝑛 ≤ 𝐿 − 1

= 0 otherwise
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Computation of Short-Time Energy

• Window jumps/slides across sequence of squared values, selecting interval
for processing

• What happens to 𝐸  𝑛 as sequence jumps by 2, 4, 8, ..., L samples 

– 𝐸 𝑛 is a lowpass function

• so it can be decimated without loss of information; 

– why is 𝐸  𝑛lowpass?

• Effects of decimation depend on L; 

– if L is small, then 𝐸 𝑛 is a lot more variable than if L is large 

• window bandwidth changes with L
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Effects of Window

𝑄  𝑛 = 𝑇 𝑥[𝑛] ∗   𝑤 𝑛
𝑛=  𝑛

= 𝑥′[𝑛] ∗   𝑤 𝑛
𝑛=  𝑛

•  𝑤 𝑛 serves as a lowpass filter on 𝑇 𝑥[𝑛] which 

often has a lot of high frequencies (most non-linearities

introduce significant high frequency energy—think of 

what 𝑥[𝑛] ∙ 𝑥[𝑛] does in frequency)

• Often we extend the definition of 𝑄  𝑛 to include a pre-

filtering term so that 𝑥[𝑛] itself is filtered to a region of 

interest
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Short-Time Energy

• Serves to differentiate voiced and unvoiced sounds in speech from silence 
(background signal)

• Natural definition of energy of weighted signal is:

– sum or squares of portion of signal

𝐸  𝑛 =  

𝑚=−∞

∞

𝑥[𝑚] 𝑤  𝑛 − 𝑚
2

• Concentrates measurement at sample  𝑛, using weighting  𝑤  𝑛 − 𝑚

𝐸 𝑛 =  

𝑚=−∞

∞

𝑥2 𝑚  𝑤2  𝑛 − 𝑚 =  

𝑚=−∞

∞

𝑥2 𝑚 ℎ  𝑛 − 𝑚

ℎ 𝑛 =  𝑤2 𝑛
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Short-Time Energy Properties

• Depends on choice of h[n], or equivalently,
window  𝑤 𝑛
– If  𝑤 𝑛 duration is very long and constant amplitude

( 𝑤 𝑛 =1, n=0,1,...,L-1), 𝐸  𝑛 would not change much 
over time, and would not reflect the short-time 
amplitudes of the sounds of the speech

• Very long duration windows correspond to narrowband
lowpass filters

– We want 𝐸  𝑛 to change at a rate comparable to the 
changing sounds of the speech 

• This is the essential conflict in all speech processing, 

– namely we need short duration window to be responsive to rapid 
sound changes, but short windows will not provide sufficient 
averaging to give smooth and reliable energy function

18
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Windows

• Consider two windows,  𝑤 𝑛
– Rectangular window (RW):
• h[n] = 1, 0 ≤ n ≤ L-1 and 0

otherwise

• gives equal weight to all L samples 
in the window (n,...,n-L+1)

– Hamming window (HW, 
raised cosine window):

• h[n] = 0.54-0.46cos(2πn/(L-1)), 0
≤ n ≤ L-1 and 0 otherwise

• gives most weight to middle
samples and tapers off strongly at 
the beginning and the end of the 
window

19

L = 21 samples

Window Frequency Responses

• Rectangular window

– 𝐻 𝑒𝑗𝜔𝑇 =
sin(

𝜔𝐿𝑇

2
)

sin(
𝜔𝑇

2
)
𝑒−𝑗𝜔𝑇

𝐿−1

2

– First zero occurs at f=Fs/L=1/(LT) (or 𝜔=(2π)/(LT)) 

• nominal cutoff frequency of the equivalent lowpass filter

• Hamming window

–  𝑤𝐻 𝑛 = 0.54 𝑤𝑅 𝑛 − 0.46 ∗ cos(
2𝜋𝑛

𝐿−1
)  𝑤𝑅 𝑛

– can decompose Hamming Window FR into 

combination of three terms
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Frequency Responses of RW and HW

• Log magnitude response of RW and HW

– Bandwidth of HW is approximately 
twice the bandwidth of RW

– Attenuation of more than 40 dB for HW
outside passband, versus 14 dB for RW

– Stopband attenuation is essentially 
independent of L, the window duration 

• increasing L simply decreases window
bandwidth

– L needs to be 

• larger than a pitch period

– otherwise severe fluctuations will occur in En, 

• but smaller than a sound duration 

– otherwise En will not adequately reflect the 
changes in the speech signal

21

There is no perfect value of L, since a pitch period can be as short as 20 samples (500 Hz at a 10 

kHz sampling rate) for a high pitch child or female, and up to 250 samples (40 Hz pitch at a 10 kHz 

sampling rate) for a low pitch male; a compromise value of L on the order of 100-200 samples for a 

10 kHz sampling rate is often used in practice

Window Frequency Responses

Rectangular Windows Hamming Windows

L=21,41,61,81,101 L=21,41,61,81,101
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Voiced/unvoiced detection

• Methods to distinguish between voiced and 

unvoiced segments

– Short-time energy

– Short-time magnitude

– Short-time zero crossing

23

Short-Time Energy

• Short-time energy computation:

𝐸 𝑛 =  

𝑚=−∞

∞

𝑥[𝑚] 𝑤  𝑛 − 𝑚
2

• For L-point rectangular window,

 𝑤 𝑚 = 1, 𝑚 = 0, 1,⋯ , 𝐿 − 1
• Giving

𝐸 𝑛 =  

𝑚=  𝑛−𝐿+1

 𝑛

(𝑥[𝑚])2

24
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Short-Time Energy using RW/HW

• As L increases, the plots tend to converge (however you are smoothing sound 
energies)

• Short-time energy provides the basis for distinguishing voiced from unvoiced speech
regions, and for medium-to-high SNR recordings, can even be used to find regions of
silence/background signal
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Short-Time Energy for AGC

• Can use an IIR filter to define short-time 

energy, e.g.,

– Time-dependent energy definition

𝜎2[𝑛] =
 𝑚=−∞

∞ 𝑥2 𝑚 ℎ 𝑛 − 𝑚

 𝑚=0
∞ ℎ 𝑚

– Consider impulse response of filter of form

ℎ 𝑛 = 𝛼𝑛−1𝑢 𝑛 − 1 = 𝛼𝑛−1 𝑛 ≥ 1
= 0 𝑛 < 1

𝜎2[𝑛] =  

𝑚=−∞

∞

(1 − 𝛼)𝑥2 𝑚 𝛼𝑛−𝑚−1𝑢 𝑛 − 𝑚 − 1
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Recursive Short-Time Energy

• 𝑢 𝑛 − 𝑚 − 1 implies the condition 𝑛 − 𝑚 − 1 ≥ 0 or 

𝑚 ≤ 𝑛 − 1 giving

𝜎2[𝑛] =  

𝑚=−∞

𝑛−1

1 − 𝛼 𝑥2 𝑚 𝛼𝑛−𝑚−1 = 1 − 𝛼 (𝑥2 𝑛 − 1 + 𝛼𝑥2 𝑛 − 2 + ⋯)

• For the index 𝑛 − 1 we have

𝜎2[𝑛 − 1] =  

𝑚=−∞

𝑛−2

1 − 𝛼 𝑥2 𝑚 𝛼𝑛−𝑚−2 = 1 − 𝛼 (𝑥2 𝑛 − 2 + 𝛼𝑥2 𝑛 − 3 + ⋯)

• Thus giving the relationship
𝜎2 𝑛 = 𝛼𝜎2 𝑛 − 1 + 𝑥2 𝑛 − 1 1 − 𝛼

• This defines an Automatic Gain Control (AGC) of the 

form

𝐺 𝑛 =
𝐺0

𝜎[𝑛]
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Recursive Short-Time Energy

𝜎2[𝑛] = 𝑥2 𝑛 ∗ ℎ 𝑛
ℎ 𝑛 = 1 − 𝛼 𝛼𝑛−1𝑢 𝑛 − 1

𝜎2[𝑧] = 𝑋2 𝑧 × 𝐻 𝑧

𝐻 𝑧 =  

𝑛=−∞

∞

ℎ 𝑛 𝑧−𝑛 =  

𝑛=−∞

∞

1 − 𝛼 𝛼𝑛−1𝑢 𝑛 − 1 𝑧−𝑛

=  

𝑛=1

∞

1 − 𝛼 𝛼𝑛−1𝑧−𝑛

𝑚 = 𝑛 − 1

𝐻 𝑧 =  

𝑚=0

∞

1 − 𝛼 𝛼𝑚𝑧−(𝑚+1) =  

𝑚=0

∞

1 − 𝛼 𝑧−1𝛼𝑚𝑧−𝑚

= 1 − 𝛼 𝑧−1  

𝑚=0

∞

𝛼𝑚𝑧−𝑚 = 1 − 𝛼 𝑧−1
1

1 − 𝛼𝑧−1 =
𝜎2[𝑧]

𝑋2 𝑧

𝜎2[𝑛] = 𝛼𝜎2[𝑛 − 1] 1 − 𝛼 𝑥2[𝑛 − 1]

28

Recursive Short-Time Energy

𝜎2[𝑛] = 𝛼𝜎2[𝑛 − 1] 1 − 𝛼 𝑥2[𝑛 − 1]
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Recursive Short-Time Energy

30
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Use of Short-Time Energy for AGC

• Variance estimate, 𝛼 = 0.9

31

Use of Short-Time Energy for AGC

32

Short-Time Magnitude

• Short-time energy is very sensitive to large

• signal levels due to x2[n] terms

– Consider a new definition of pseudo-energy based on 
average signal magnitude (rather than energy)

𝑀 𝑛 =  

𝑚=−∞

∞

𝑥[𝑚]  𝑤  𝑛 − 𝑚

– Weighted sum of magnitudes, rather than weighted sum of 
squares

• Computation avoids multiplications of signal with itself (the squared 
term)

33

Short-Time Magnitudes

34

Short Time Energy and Magnitude-Rectangular Window

• Differences between En and Mn noticeable in unvoiced regions

• Dynamic range of Mn ~ square root (dynamic range of En)

– level differences between voiced and unvoiced segments are smaller

• En and Mn can be sampled at a rate of 100/sec for window durations of 20 msec or so 

– efficient representation of signal energy/magnitude

35

Short Time Energy and Magnitude-Hamming Window

36
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Other Lowpass Windows

• Can replace RW or HW with any lowpass filter

• Window should be positive since this guarantees En

and Mn will be positive

• FIR windows are efficient computationally since they 

can slide by R samples for efficiency with no loss of 

information (what should R be?)

• Can even use an infinite duration window if its z-

transform is a rational function, i.e.,

ℎ 𝑛 = 𝑎𝑛 , 𝑛 ≥ 0, 0 < 𝑎 < 1

ℎ 𝑛 = 0, 𝑛 < 0

𝐻 𝑧 =
1

1−𝛼𝑧−1 𝑧 > 𝑎
37

Other Lowpass Windows

• This simple lowpass filter can be used to implement En

and Mn recursively as:

𝐸𝑛 = 𝑎𝐸𝑛−1 + 1 − 𝑎 𝑥2[𝑛] (short-time energy)

𝑀𝑛 = 𝑎𝑀𝑛−1 + 1 − 𝑎 𝑥[𝑛] (short-time magnitude)

• Need to compute En or Mn every sample and then

down-sample to 100/sec rate

• Recursive computation has a non-linear phase, so delay 

cannot be compensated exactly

38

Short-Time Average ZC Rate

• Energy for voiced speech tends to concentrate 

below 3 KHz, whereas for unvoiced speech 

energy is found at higher frequencies

• Since high frequencies imply high zero-crossing 

rates, one can discriminate both types of 

segments from their zero-crossing rate

– As before, split the speech signal 𝑥[𝑛] into short 

blocks (i.e., 10-20 ms)

– Calculate the zero-crossing rate within each block

– Determine a maximum likelihood threshold

39

Short-Time Average ZC Rate

• zero crossing 
– successive samples have different 

algebraic signs

• The rate at which zero crossings occur is a simple measure of 
the frequency content of a signal. 

• This is particularly true of narrowband signals. 

• For example, a sinusoidal signal of frequency Fo, sampled at 
a rate Fs, has Fs / Fo samples per cycle of the sine wave. 

• Each cycle has two zero crossings so that the long-time 
average rate of zero-crossings is

Z = 2 Fs / Fo , crossings/sample

• The average zero-crossing rate gives a reasonable way to 
estimate the frequencyof a sine wave.

40

Short-Time Average ZC Rate

• Speech signals are broadband signals and the interpretation of 
average zero-crossing rate is therefore much less precise.
– However, rough estimates of spectral properties can be obtained 

using a representation based on the shorttime average zero-
crossing rate. 

• ZC Rate can be defined as

𝑍  𝑛 =
1

2𝐿eff
 

𝑚=  𝑛−𝐿+1

 𝑛

sgn{𝑥 𝑚 − sgn{𝑥[𝑚 − 1]}  𝑤 [ 𝑛 − 𝑚]

where sgn 𝑥[𝑛] =  
1 𝑥 ≥ 0

−1 𝑥 < 0

 𝑤 𝑛 =  
1 0 ≤ 𝑛 ≤ 𝐿 − 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

41

Short-Time Average ZC Rate

• The short-time average zero-crossing rate has the 
same general properties as the short-time energy 
and the short time average magnitude.

• The computation of 𝑍  𝑛 is done by checking
samples in pairs to determine where the zero-
crossings occur and then the average is computed 
over L consecutive samples.

42
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Zero Crossing Normalization

• The formal definition of 𝑍  𝑛 is:

𝑍  𝑛 = 𝑧1 =
1

2𝐿
 

𝑚=  𝑛−𝐿+1

 𝑛

sgn{𝑥 𝑚 − sgn{𝑥[𝑚 − 1]}

is interpreted as the number of zero crossings 

per sample.

• For most practical applications, we need the rate 

of zero crossings per fixed interval of M

samples, which is
𝑧𝑀 = 𝑧1𝑀 = rate of zero crossings per M sample interval

43

Zero Crossing Normalization

• Thus, for an interval of 𝜏 sec., corresponding to 

M samples we get

𝑧𝑀 = 𝑧1𝑀; 𝑀 = 𝜏𝐹𝑠 =
𝜏

𝑇𝑠

• Zero crossings/10 msec interval as a function 

of sampling rate:

– 𝐹𝑠 = 10000 Hz;𝑇 = 100 𝜇sec; 𝜏 = 10 𝑚sec; 𝑀 = 100 samples

– 𝐹𝑠 = 8000 Hz; 𝑇 = 100 𝜇sec; 𝜏 = 10 𝑚sec; 𝑀 = 80 samples

– 𝐹𝑠 = 16000 Hz;𝑇 = 100 𝜇sec; 𝜏 = 10 𝑚sec; 𝑀 = 160 samples

44

Zero Crossing Normalization

• For a 1000 Hz sinewave as input, using a 40 msec
window length (L), with various values of sampling rate 
(Fs), we get the following:

Fs L zs M zM

8000 320 1/4 80 20

10000 400 1/5 100 20

16000 640 1/8 160 20

• Thus we see that the normalized (per interval) zero 
crossing rate, zM , is independent of the sampling rate and 
can be used as a measure of the dominant energy in a 
band.

45

Zero Crossing and Energy Computation

46

• Hamming window 

with duration 

L=201 samples 

(12.5 msec at 

Fs=16 kHz)

• Hamming window 

with duration 

L=401 samples 

(25 msec at Fs=16 

kHz)

• Unvoiced Speech:
– The dominant energy 

component is at about 2.5 
kHz

• Voiced Speech: 
– The dominant energy

component is at about 700 
Hz

• For voiced speech, energy is mainly below 1.5 kHz

• For unvoiced speech, energy is mainly above 1.5 kHz

• Mean ZC rate for unvoiced speech is 49 per 10 msec
interval

• Mean ZC rate for voiced speech is 14 per 10 msec
interval

Zero Crossing Rate Distributions

47

• Some examples of average ZC rate measurements:

• The duration of the averaging 
window is 15 msec

– 150 samples at 10 kHz
sampling rate 

• The output is computed 100
times/sec

– window moved in steps of 100
samples. 

• Note that just as in the case of 
short-time energy and average 
magnitude, the short-time 
average ZC rate can be 
sampled at a very low rate. 

• Although the ZC rate varies 
considerably, the voiced and 
unvoiced regions are quite 
prominent

Zero Crossing Rates for Speech

48
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Short-Time Energy, Magnitude, ZC

49

Issues in ZC Rate Computation

• For zero crossing rate to be accurate, need zero
DC in signal 

– need to remove offsets, hum, noise 

• use bandpass filter to eliminate DC and hum

• Can quantize the signal to 1-bit for computation
of ZC rate

• Can apply the concept of ZC rate to bandpass
filtered speech to give a crude spectral estimate
in narrow bands of speech 

– kind of gives an estimate of the strongest frequency 
in each narrow band of speech

50

Summary of Simple Time Domain Measures

𝑄  𝑛 =  

𝑚=−∞

∞

𝑇 𝑥 𝑚  𝑤[ 𝑛 − 𝑚]

• Energy:

𝐸 𝑛 =  

𝑚=  𝑛−𝐿+1

 𝑛

𝑥2[𝑚] 𝑤[  𝑛 − 𝑚]

– can downsample 𝐸  𝑛 at rate commensurate with window bandwidth

• Magnitude:

𝑀 𝑛 =  

𝑚=  𝑛−𝐿+1

 𝑛

𝑥[𝑚] 𝑤[  𝑛 − 𝑚]

• Zero Crossing Rate:

𝑍  𝑛 = 𝑧1 =
1

2𝐿
 

𝑚=  𝑛−𝐿+1

 𝑛

sgn{𝑥 𝑚 − sgn{𝑥[𝑚 − 1]}  𝑤[  𝑛 − 𝑚]

51

Short-Time Autocorrelation

• The autocorrelation function of a discrete-time deterministic 
signal:

∅ 𝑘 =  

𝑚=−∞

∞

𝑥 𝑚 𝑥[𝑚 + 𝑘]

• For a random or periodic signal:

∅ 𝑘 = lim
𝐿→∞

1

2𝐿 + 1
 

𝑚=−𝐿

𝐿

𝑥 𝑚 𝑥[𝑚 + 𝑘]

• If 𝑥 𝑛 = 𝑥[𝑛 + 𝑃], then ∅ 𝑘 = ∅ 𝑘 + 𝑃
– the autocorrelation function preserves periodicity

• Properties of ∅ 𝑘 :
– ∅ 𝑘 is even, ∅ 𝑘 = ∅ −𝑘
– ∅ 𝑘 is maximum at 𝑘 = 0, ∅ 𝑘 ≤ ∅ 0 , ∀𝑘
– ∅ 0 is the signal energy or power (for random signals)
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Periodic Signals

• For a periodic signal we have (at least in theory) 

∅ 𝑃 = ∅ 0 so the period of a periodic signal 

can be estimated as the first non-zero maximum 

of ∅ 𝑘

– This means that the autocorrelation function is a 

good candidate for speech pitch detection

algorithms

– It also means that we need a good way of measuring 

the short-time autocorrelation function for speech 

signa
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Short-Time Autocorrelation

• A reasonable definition for the short-time 

autocorrelation is:

𝑅  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥 𝑚  𝑤[ 𝑛 − 𝑚]𝑥[𝑚 + 𝑘] 𝑤[ 𝑛 − 𝑘 − 𝑚]

– Select a segment of speech by windowing

– Compute deterministic autocorrelation of the 

windowed speech
𝑅  𝑛 𝑘 = 𝑅  𝑛 −𝑘 − symmetry

=  

𝑚=−∞

∞

𝑥 𝑚 𝑥[𝑚 + 𝑘] 𝑤[ 𝑛 − 𝑚] 𝑤[ 𝑛 − 𝑘 − 𝑚]
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Short-Time Autocorrelation

• Define filter of the form :
 𝑤𝑘 =  𝑤[ 𝑛] 𝑤[ 𝑛 + 𝑘]

• This enables us to write the short-time autocorrelation in the form:

𝑅  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥 𝑚 𝑥[𝑚 − 𝑘] 𝑤[ 𝑛 − 𝑚]

• The value of  𝑤  𝑛 𝑘 at time  𝑛 for the kth lag is obtained by filtering the 
sequence 𝑥  𝑛 𝑥[  𝑛 − 𝑘] with a filter with impulse response  𝑤𝑘[  𝑛]
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Short-Time Autocorrelation

𝑅  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥 𝑚  𝑤[  𝑛 − 𝑚]𝑥[𝑚 + 𝑘] 𝑤[ 𝑛 − 𝑘 − 𝑚]

• L points used to compute 𝑅  𝑛 0

• L-1 points used to compute 𝑅  𝑛 𝑘
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Short-Time Autocorrelation
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• Autocorrelation function for (a) and (b) voiced speech, and (c)
unvoiced speech, using a rectangular window with L = 401

• Autocorrelation peaks 
occur at k = 72, 144, ... 
=> 140 Hz pitch

• Φ(P)<Φ(0) since 
windowed speech is not 
perfectly periodic

• Over a 401 sample 
window (40 msec of 
signal), pitch period
changes occur, 

– so P is not perfectly 
defined

Examples of Autocorrelations
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• Autocorrelation function for (a) and (b) voiced speech, and 

(c) unvoiced speech, using a Hanning window with L = 401

• Much less clear 

estimates of periodicity 

since HW tapers signal 

so strongly, making it 

look like a non-periodic 

signal

• No strong peak for 

unvoiced speech

Examples of Autocorrelations
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Voiced (female) L=401 (magnitude)
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Voiced (female) L=401 (log mag)
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Voiced (male) L=401
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Unvoiced L=401

63

Unvoiced L=401

64

Effects of Window Size

65

• An important issue is how L
should be chosen to give a 
good indication of  
periodicity.

– small L

• pitch period almost constant in 
window

– large L

• clear periodicity seen in 
window

– as k increases, the number of 
window points decrease, 
reducing the accuracy and size 
of Rn(k) for large k => have a 
taper of the type R(k)=1-k/L, 
|k|<L shaping of autocorrelation 
(this is the autocorrelation of 
size L rectangular window)

• Allow L to vary with 
detected pitch periods 

– so that at least 2 full periods are 
included

Modified Autocorrelation

• Another approach is to allow the window length to adapt to 
match the expected pitch period. 

• The modified short-time autocorrelation function is defined as

 𝑅  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥  𝑛 + 𝑚 + 𝑘  𝑤1 𝑚 𝑥 𝑚 + 𝑘  𝑤2 𝑚 + 𝑘

– where  𝑤1: standard L-point window,  𝑤2: extended window of 
duration L+K samples, where K is the largest lag of interest

 𝑤1 𝑚 =  𝑤1 −𝑚 and  𝑤2 𝑚 =  𝑤2 −𝑚

– For rectangular windows we choose the following:

 𝑤1 𝑚 = 1, 0 ≤ 𝑚 ≤ 𝐿 − 1
 𝑤2 𝑚 = 1, 0 ≤ 𝑚 ≤ 𝐿 − 1 + 𝐾

– Giving

 𝑅  𝑛 𝑘 =  

𝑚=0

𝐿−1

𝑥  𝑛 + 𝑚 𝑥  𝑛 + 𝑚 + 𝑘 , 0 ≤ 𝑘 ≤ 𝐾

– Always use L samples in computation of  𝑅  𝑛 𝑘 ∀𝑘
66
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• The cross-correlation (not autocorrelation) function for the two 
different finite length segments of speech, 𝑥  𝑛 + 𝑚  𝑤1 𝑚 and 
𝑥  𝑛 + 𝑚  𝑤2 𝑚 . 

• Thus  𝑅  𝑛 𝑘 has the 
properties of a cross-
correlation function, 
not an autocorrelation 
function. 

• For example, 
 𝑅  𝑛 𝑘 ≠  𝑅  𝑛 𝑘 .  

• Nevertheless,  𝑅  𝑛 𝑘
will display peaks at 
multiples of the 
period of a periodic 
signal and it will not 
display a fall-off in 
amplitude at large 
values of k. 

Examples of Modified Autocorrelation
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Examples of Modified Autocorrelation
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Examples of Modified Autocorrelation

• The modified 
autocorrelation 
functions 
corresponding to 
the examples of 
Figure in slide 58. 

• Because for L = 
401 the effects of 
waveform variation 
dominate the 
tapering effect in 
Figure in slide 58, 
the two figures 
look much alike. 
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Examples of Modified Autocorrelation

• A comparison with 
the Figure in the slide 
59 shows that the 
difference is more 
apparent for smaller 
values of L. 

• It is clear that the 
peaks are less than 
the k = 0 peak only 
because of deviations 
from periodicity over 
the interval n to n+L-
1+K .
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Short-Time Average Magnitude Difference Function (AMDF)

• Belief that for periodic signals of period P, the 

difference function
𝑑 𝑛 = 𝑥 𝑛 − 𝑥 𝑛 − 𝑘

will be approximately zero for 𝑘 = 0,±𝑃, ±2𝑃, ⋯

– For realistic speech signals, 𝑑 𝑛 will be small at 𝑘 = 𝑃, 

but not zero.

• Based on this reasoning, the short-time AMDF is

defined as:

𝛾  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥  𝑛 + 𝑚  𝑤1 𝑚 − 𝑥  𝑛 + 𝑚 − 𝑘  𝑤2 𝑚 − 𝑘

– with  𝑤1 𝑚 and  𝑤2 𝑚 being rectengular windows.
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Short-Time Average Magnitude Difference Function (AMDF)

• If both windows are the same length, then 𝛾  𝑛 𝑘 is similar 

to the short-time autocorrelation

• If  𝑤2 𝑚 is longer than  𝑤1 𝑚 , then 𝛾  𝑛 𝑘 is similar to 

the modified short-time autocorrelation (or covariance) 

function. 

• In fact it can be shown that

𝛾  𝑛 𝑘 ≈ 2𝛽[𝑘]  𝑅  𝑛 0 −  𝑅  𝑛 𝑘
 1 2

– where 𝛽[𝑘] varies between 0.6 and 1.0 for different 

segments of speech, 

– but does not change rapidly with k for a particular 

speech segment
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Short-Time Average Magnitude Difference Function (AMDF)

• Implemented with subtraction , addition, and absolute value 
operations, 
– in contrast to addition and multiplication operations for the 

autocorrelation function. 

• With floating point arithmetic, where multiplies and adds 
take approximately the same time, 
– about the same time is required for either method with the same 

window length. 

• However, for special purpose hardware, or with fixed point 
arithmetic, the AMDF appears to have the advantage.
– In this case multiplies usually are more time consuming and 

furthermore either scaling or a double precision accumulator is 
required to hold the sum of lagged products. 

• For this reason the AMDF function has been used in
numerous real-time speech processing systems.
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AMDF for Speech Segments
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Summary

• Short-time parameters in the time domain:

– Short-time energy

𝐸  𝑛 =  

𝑚=  𝑛−𝐿+1

 𝑛

𝑥2[𝑚] 𝑤[  𝑛 − 𝑚]

– Short-time average magnitude

𝑀  𝑛 =  

𝑚=  𝑛−𝐿+1

 𝑛

𝑥[𝑚] 𝑤[  𝑛 − 𝑚]

– Short-time zero crossing rate

𝑍  𝑛 = 𝑧1 =
1

2𝐿
 

𝑚=  𝑛−𝐿+1

 𝑛

sgn{𝑥 𝑚 − sgn{𝑥[𝑚 − 1]}  𝑤[  𝑛 − 𝑚]

– Short-time autocorrelation

𝑅  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥 𝑚  𝑤[  𝑛 − 𝑚]𝑥[𝑚 + 𝑘] 𝑤[  𝑛 − 𝑘 − 𝑚]

– Modified short-time autocorrelation

 𝑅  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥  𝑛 + 𝑚 + 𝑘  𝑤1 𝑚 𝑥 𝑚 + 𝑘  𝑤2 𝑚 + 𝑘

– Short-time average magnitude difference function

𝛾  𝑛 𝑘 =  

𝑚=−∞

∞

𝑥  𝑛 + 𝑚  𝑤1 𝑚 − 𝑥  𝑛 + 𝑚 − 𝑘  𝑤2 𝑚 − 𝑘
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