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Digital Signal Processing
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Sampling & Aliasing
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LECTURE OBJECTIVES

• SAMPLING can cause ALIASING

– Sampling Theorem

– Sampling Rate > 2(Highest Frequency)

• Spectrum for digital signals, x[n]

– Normalized Frequency




 2
2

ˆ +==
s

s
f

f
T

ALIASING
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SYSTEMS Process Signals

• PROCESSING GOALS:

– Change x(t) into y(t)

• For example, more BASS

– Improve x(t), e.g., image deblurring

– Extract Information from x(t)

SYSTEM
x(t) y(t)
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System IMPLEMENTATION

• DIGITAL/MICROPROCESSOR

• Convert x(t) to numbers stored in memory

ELECTRONICS
x(t) y(t)

COMPUTER D-to-AA-to-D
x(t) y(t)y[n]x[n]

• ANALOG/ELECTRONIC:

• Circuits: resistors, capacitors, op-amps
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SAMPLING x(t)

• SAMPLING PROCESS

• Convert x(t) to numbers x[n]

• “n” is an integer; x[n] is a sequence of values

• Think of “n” as the storage address in memory

• UNIFORM SAMPLING at t = nTs

• IDEAL:  x[n] = x(nTs)

C-to-D
x(t) x[n]
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SAMPLING RATE, fs

• SAMPLING RATE (fs)

– fs =1/Ts 

• NUMBER of SAMPLES PER SECOND

– Ts = 125 microsec → fs = 8000 samples/sec
– UNITS ARE HERTZ:  8000 Hz 

• UNIFORM SAMPLING at   t = nTs = n/fs

– IDEAL:  x[n] = x(nTs)=x(n/fs)

C-to-D
x(t) x[n]=x(nTs)
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fs = 2 kHz

fs = 500Hz

Hz100=f
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SAMPLING THEOREM

• HOW OFTEN ?

– DEPENDS on FREQUENCY of SINUSOID

– ANSWERED by SHANNON/NYQUIST Theorem

– ALSO DEPENDS on “RECONSTRUCTION”
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Reconstruction?  Which One?
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Given the samples, draw a sinusoid through the values
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STORING DIGITAL SOUND

• x[n] is a SAMPLED SINUSOID

– A list of numbers stored in memory

• EXAMPLE: audio CD

• CD rate is 44,100 samples per second

– 16-bit samples

– Stereo uses 2 channels

• Number of bytes for 1 minute is

– 2 × (16/8) × 60 × 44100 = 10.584 Mbytes
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DISCRETE-TIME SINUSOID

• Change x(t) into x[n]      DERIVATION

))cos((][  += nTAnx s

DEFINE DIGITAL FREQUENCY
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DIGITAL FREQUENCY

• VARIES from 0 to 2, as f varies from 0 to 

the sampling frequency

• UNITS are radians, not rad/sec

– DIGITAL FREQUENCY is NORMALIZED
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SPECTRUM (DIGITAL)

sf

f
 2ˆ =

kHz1=sf ˆ  
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2(0.1)–0.2

))1000/)(100(2cos(][  += nAnx
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SPECTRUM (DIGITAL) ???
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f

fs

fs =100 Hz ˆ  
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2(1)–2
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x[n] is zero frequency???

))100/)(100(2cos(][  += nAnx
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The REST of the STORY

• Spectrum of x[n] has more than one line for 

each complex exponential

– Called ALIASING

– MANY SPECTRAL LINES

• SPECTRUM is PERIODIC with period = 2
– Because 

Acos( ˆ  n + ) = Acos(( ˆ  + 2 )n + )
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ALIASING DERIVATION

• Other Frequencies give the same ˆ  
Hz1000at  sampled)400cos()(1 == sfttx 

)4.0cos()400cos(][
10001 nnx n  ==

Hz1000at  sampled)2400cos()(2 == sfttx 

)4.2cos()2400cos(][
10002 nnx n  ==
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][][ 12 nxnx = )1000(24002400  =−
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ALIASING DERIVATION–2

• Other Frequencies give the same
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and we want :   x[n] = Acos( ˆ  n + )

If  x(t) = Acos(2( f + fs)t + ) t 
n

fs
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ALIASING CONCLUSIONS

• ADDING fs or 2fs or –fs to the FREQ of x(t) 

gives exactly the same x[n]

– The samples, x[n] = x(n/ fs ) are EXACTLY THE 

SAME VALUES

• GIVEN x[n], WE CAN’T DISTINGUISH fo 

FROM (fo + fs ) or (fo + 2fs )
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NORMALIZED FREQUENCY

• DIGITAL FREQUENCY
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SPECTRUM for x[n]

• PLOT versus NORMALIZED FREQUENCY

• INCLUDE ALL SPECTRUM LINES

– ALIASES

• ADD MULTIPLES of 2

• SUBTRACT MULTIPLES of 2

– FOLDED ALIASES

• ALIASES of NEGATIVE FREQS
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SPECTRUM (MORE LINES)
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SPECTRUM (ALIASING CASE)
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SPECTRUM (FOLDING CASE)
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D-to-A Conversion

34

• A-to-D

• Convert x(t) to numbers stored in memory 

• D-to-A

• Convert y[n] back to a “continuous-time” signal, 

y(t)

• y[n] is called a “discrete-time” signal

SIGNAL TYPES

COMPUTER D-to-AA-to-D
x(t) y(t)y[n]x[n]
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SAMPLING x(t)

• UNIFORM SAMPLING at t = nTs

• IDEAL:  x[n] = x(nTs)

C-to-D
x(t) x[n]
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NYQUIST RATE

• “Nyquist Rate” Sampling

– fs > TWICE the HIGHEST Frequency in x(t)

– “Sampling above the Nyquist rate”

• BANDLIMITED SIGNALS

– DEF:  x(t) has a HIGHEST FREQUENCY 

COMPONENT in its SPECTRUM

– NON-BANDLIMITED EXAMPLE

• TRIANGLE WAVE is NOT BANDLIMITED
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SPECTRUM for x[n]

• INCLUDE ALL SPECTRUM LINES

– ALIASES

• ADD INTEGER MULTIPLES of  2 and  -2

– FOLDED ALIASES

• ALIASES of NEGATIVE FREQS

• PLOT versus NORMALIZED FREQUENCY

– i.e., DIVIDE fo  by fs

 22ˆ +=
sf

f
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EXAMPLE: SPECTRUM

• x[n] = Acos(0.2n+f)

• FREQS @ 0.2 and  -0.2

• ALIASES:

– {2.2, 4.2, 6.2, …} & {-1.8,-3.8,…}

– EX:      x[n] = Acos(4.2n+f)

• ALIASES of NEGATIVE FREQ: 

– {1.8,3.8,5.8,…} & {-2.2, -4.2 …}

33 34

35 36

37 38
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SPECTRUM (MORE LINES)
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SPECTRUM (ALIASING CASE)
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FOLDING (a type of ALIASING)

• EXAMPLE: 3 different x(t); same x[n]
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• 900 Hz “folds” to 100 Hz when fs=1kHz
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DIGITAL FREQ       AGAIN
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SPECTRUM (FOLDING CASE)
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FREQUENCY DOMAINS

D-to-AA-to-D
x(t) y(t)x[n]
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D-to-A Reconstruction

• Create continuous y(t) from y[n]

– IDEAL

• If you have formula for y[n]

– Replace n in y[n] with fst

– y[n] = Acos(0.2n+f)    with fs = 8000 Hz

– y(t) = Acos(2(800)t+f) 

COMPUTER D-to-AA-to-D
x(t) y(t)y[n]x[n]
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D-to-A is AMBIGUOUS !

• ALIASING

– Given y[n], which y(t) do we pick ? ? ?

– INFINITE NUMBER of y(t)

• PASSING THRU THE SAMPLES, y[n]

– D-to-A RECONSTRUCTION MUST CHOOSE 
ONE OUTPUT

• RECONSTRUCT THE SMOOTHEST ONE

– THE LOWEST FREQ, if y[n] = sinusoid 
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SPECTRUM (ALIASING CASE)
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Reconstruction (D-to-A)

• CONVERT STREAM of NUMBERS to x(t)

• “CONNECT THE DOTS”

• INTERPOLATION

y(t)

y[k]

kTs (k+1)Ts
t

INTUITIVE,

conveys the idea
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SAMPLE & HOLD DEVICE

• CONVERT y[n] to y(t)

– y[k] should be the value of y(t) at t = kTs

– Make y(t) equal to y[k] for

• kTs -0.5Ts < t < kTs +0.5Ts

y(t)

y[k]

kTs (k+1)Ts
t

STAIR-STEP

APPROXIMATION
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SQUARE PULSE CASE

46 47

48 49
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OVER-SAMPLING CASE

EASIER TO RECONSTRUCT
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MATH MODEL for D-to-A

SQUARE PULSE:
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EXPAND the SUMMATION

• SUM of SHIFTED PULSES p(t-nTs)

– “WEIGHTED” by y[n]

– CENTERED at t=nTs

– SPACED by Ts

• RESTORES “REAL TIME” 

y[n]p(t − nTs ) =
n= −





+ y[0]p(t) + y[1]p(t − Ts ) + y[2]p(t − 2Ts ) +
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p(t)
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OPTIMAL PULSE ?

CALLED

“BANDLIMITED

INTERPOLATION”
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