

ALIASING DERIVATION

ω

 $x_{2}(t) = \cos(2400\pi t) \text{ sampled at } f_{s} = 1000 \text{ Hz}$ $x_{2}[n] = \cos(2400\pi \frac{n}{1000}) = \cos(2.4\pi n)$ $x_{2}[n] = \cos(2.4\pi n) = \cos(0.4\pi n + 2\pi n) = \cos(0.4\pi n)$ $\Rightarrow x_{2}[n] = x_{1}[n] \qquad 2400\pi - 400\pi = 2\pi(1000)$ 17

• Other Frequencies give the same

 $x_1[n] = \cos(400\pi \frac{n}{1000}) = \cos(0.4\pi n)$

 $x_1(t) = \cos(400\pi t)$ sampled at $f_s = 1000 \,\mathrm{Hz}$

ALIASING CONCLUSIONS

- ADDING f_s or $2f_s$ or $-f_s$ to the FREQ of x(t) gives exactly the same x[n]
 - The samples, $x[n] = x(n/f_s)$ are EXACTLY THE <u>SAME VALUES</u>
- GIVEN x[n], WE CAN'T DISTINGUISH f_0 FROM $(f_0 + f_s)$ or $(f_0 + 2f_s)$

19

NORMALIZED FREQUENCY

• DIGITAL FREQUENCY Normalized Radian Frequency $\hat{\omega} = \omega T_s = \frac{2\pi f}{f_s} + 2\pi \ell$ Normalized Cyclic Frequency $\hat{f} = \hat{\omega}/(2\pi) = fT_s = f/f_s$

20

- $x[n] = A\cos(0.2\pi n + \phi)$
- FREOS @ 0.2π and -0.2π
- ALIASES:
 - $-\{2.2\pi, 4.2\pi, 6.2\pi, \ldots\} \& \{-1.8\pi, -3.8\pi, \ldots\}$ - EX: $x[n] = A\cos(4.2\pi n + \phi)$
- ALIASES of NEGATIVE FREQ: $-\{1.8\pi, 3.8\pi, 5.8\pi, \ldots\} \& \{-2.2\pi, -4.2\pi \ldots\}$

