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Data Mining

Cluster Analysis
• Outline

– Overview 

– K-means 

– Agglomerative Hierarchical Clustering

– DBSCAN 

– Cluster Evaluation

–

What is Cluster Analysis?

• Cluster analysis divides data into groups (clusters) that 

are meaningful, useful,or both.

– Given a set of objects, place them in groups such that the 

objects in a group are similar (or related) to one another and 

different from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized
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Applications of Cluster Analysis

• Clustering for Understanding 

– classes, or conceptually meaningful groups of objects 

that share common characteristics

• In the context of understanding data, clusters are potential 

classes and cluster analysis is the study of techniques for 

automatically finding classes

• Examples:

– Biology

– Information Retrieval

– Climate

– Psychology and Medicine

– Business
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Applications of Cluster Analysis

• Clustering for Utility 

– Cluster analysis provides an abstraction from 

individual data objects to the clusters in which those 

data objects reside

• In the context of utility, cluster analysis is the study of 

techniques for finding the most representative cluster 

prototypes

• Examples:

– Summarization

– Compression

– Efficiently Finding Nearest Neighbors
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How many clusters?

Four ClustersTwo Clusters

Six Clusters

Notion of a Cluster can be Ambiguous
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• A clustering is a set of clusters

• Important distinction between hierarchical and 
partitional sets of clusters 

– Partitional (unnested) Clustering

• A division of data objects into non-overlapping subsets 
(clusters) such that each data object is in exactly one
subset

– Hierarchical (nested) clustering

• A set of nested clusters organized as a hierarchical tree 

• Each node (cluster) in the tree (except for the leaf 
nodes) is the union of its children (subclusters), and the 
root of the tree is the cluster containing all the objects

Types of Clusterings
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Original Points A Partitional  Clustering
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Partitional Clustering

p4

p1
p3

p2

 

p4 

p1 
p3 

p2 

p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering Non-traditional Dendrogram

Traditional Dendrogram
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Hierarchical Clustering

• Exclusive versus non-exclusive
– In non-exclusive clusterings, points may belong to 

multiple clusters.
• Can belong to multiple classes or could be ‘border’ 

points

– Fuzzy clustering  (one type of non-exclusive) 
• In fuzzy clustering, a point belongs to every cluster 

with some weight between 0 and 1

• Weights must sum to 1

• Probabilistic clustering has similar characteristics

• Partial versus complete
– In some cases, we only want to cluster some of the 

data
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Other Distinctions Between Sets of Clusters

Types of Clusters

• Well-separated clusters

• Prototype-based clusters

• Contiguity-based clusters

• Density-based clusters

• Described by an Objective Function

11

• Well-Separated Clusters: 

– A cluster is a set of points such that any point in 
a cluster is closer (or more similar) to every other 
point in the cluster than to any point not in the 
cluster. 

3 well-separated clusters
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Types of Clusters
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• Prototype-based (center-based) Clusters

– A cluster is a set of objects such that an object in a 
cluster is closer (more similar) to the prototype or  
“center” of a cluster, than to the center of any other 
cluster  

• The center of a cluster is often a centroid, the average of 
all the points in the cluster, or a medoid, the most 
“representative” point of a cluster 

4 center-based clusters
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Types of Clusters

• Graph-Based (Contiguity-Based) Clusters

– A cluster is a set of points such that a point in a 
cluster is closer (or more similar) to one or more 
other points in the cluster than to any point not in 
the cluster.

8 contiguous clusters
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Types of Clusters

• Density-based Clusters

– A cluster is a dense region of points, which is 
separated by low-density regions, from other 
regions of high density. 

– Used when the clusters are irregular or intertwined, 
and when noise and outliers are present. 

6 density-based clusters
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Types of Clusters Types of Clusters
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• Clusters Defined by an Objective Function
– Finds clusters that minimize or maximize an objective 

function. 

– Enumerate all possible ways of dividing the points into 
clusters and evaluate the `goodness' of each potential set 
of clusters by using the given objective function.  (NP 
Hard)

– Can have global or local objectives.
• Hierarchical clustering algorithms typically have local 

objectives

• Partitional algorithms typically have global objectives

– A variation of the global objective function approach is 
to fit the data to a parameterized model. 

• Parameters for the model are determined from the data. 
• Mixture models assume that the data is a ‘mixture' of a number of statistical 

distributions.  
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Types of Clusters Characteristics of the Input Data Are Important

• Type of proximity or density measure
– Central to clustering 

– Depends on data and application 

• Data characteristics that affect proximity and/or density 
are
– Dimensionality

• Sparseness

– Attribute type

– Special relationships in the data
• For example, autocorrelation

– Distribution of the data

• Noise and Outliers
– Often interfere with the operation of the clustering algorithm

• Clusters of differing sizes, densities, and shapes

18
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Clustering Algorithms

• Techniques to introduce many of the concepts 
involved in cluster analysis:

– K-means and its variants

• a prototype-based, partitional clustering technique that 
attempts to find a user-specified number of clusters (K), 
which are represented by their centroids

– Agglomerative Hierarchical clustering

• a collection of closely related clustering techniques that 
produce a hierarchical clustering by starting with each point 
as a singleton cluster and then repeatedly merging the two 
closest clusters until a single, all encompassing cluster 
remains

– Density-based clustering

19

K-means Clustering

• Prototype-based clustering techniques create a one-
level partitioning of the data objects. 

– K-means 

• defines a prototype in terms of a centroid, which is usually the 
mean of a group of points, and is typically applied to objects in a 
continuous n-dimensional space.

– K-medoid 

• defines a prototype in terms of a medoid, which is the most 
representative point for a group of points, and can be applied to a 
wide range of data since it requires only a proximity measure for 
a pair of objects.

– While a centroid almost never corresponds to an actual 
data point, a medoid, by its definition, must be an actual 
data point
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• Partitional clustering approach 

• Number of clusters, K, must be specified

• Each cluster is associated with a centroid (center 
point) 

• Each point is assigned to the cluster with the 
closest centroid

• The basic algorithm is very simple:

21

K-means Clustering
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Example of K-means Clustering
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Example of K-means Clustering

• Simple iterative algorithm.
– Choose initial centroids; 
– repeat {assign each point to a nearest centroid; re-compute 

cluster centroids} 
– until centroids stop changing.

• Initial centroids are often chosen randomly.
– Clusters produced can vary from one run to another

• The centroid is (typically) the mean of the points in the 
cluster, but other definitions are possible (see Table 7.2).

• K-means will converge for common proximity measures  
with appropriately defined centroid (see Table 7.2)

• Most of the convergence happens in the first few 
iterations.

– Often the stopping condition is changed to ‘Until relatively few 
points change clusters’

• Complexity is O( n * K * I * d )
– n = number of points, K = number of clusters, 

I = number of iterations, d = number of attributes

24

K-means Clustering – Details
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K-means Objective Function

• A common objective function (used with 
Euclidean distance measure) is Sum of Squared 
Error (SSE) , which is also known as scatter
– For each point, the error is the distance to the nearest 

cluster center

– To get SSE, we square these errors and sum them.

𝑆𝑆𝐸 =

𝑖=1

𝐾



𝑥∈𝐶𝑖

𝑑𝑖𝑠𝑡(𝑐𝑖, 𝑥)
2 𝑐𝑖 =

1

𝑚𝑖


𝑥∈𝐶𝑖

𝑥

x is a data point in cluster Ci , ci is the centroid for 
cluster Ci , mi is the number of objects in the ith

cluster

– SSE improves in each iteration of K-means until it 
reaches a local or global minima. 
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K-means Objective Function

• To illustrate, the centroid of a cluster containing 
the three two-dimensional points, 

(1,1), (2,3), and (6,2), 

• Centroid is

𝑐𝑖 =
1

𝑚𝑖


𝑥∈𝐶𝑖

𝑥

((1 + 2 + 6) / 3, (1 + 3 + 2) / 3) = (3, 2)
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K-means Objective Function

• K-means is not restricted to data in Euclidean space

• Consider document data and the cosine similarity 
measure.
– Assume that the document data is represented as a 

document-term matrix

• Objective is to maximize the similarity of the 
documents in a cluster to the cluster centroid; 
– this quantity is known as the cohesion of the cluster.

• The analogous quantity to the total SSE is the total 
cohesion, which is given by

𝑆𝑆𝐸 =

𝑖=1

𝐾



𝑥∈𝐶𝑖

𝑐𝑜𝑠𝑖𝑛𝑒(𝑐𝑖 , 𝑥)

x is a data point in cluster Ci , ci is the centroid for cluster Ci
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids …
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Importance of Choosing Initial Centroids …

25 26

27 28

29 30



Copyright 2000 N. AYDIN. All rights 

reserved. 6

• Depending on the 

choice of initial 

centroids, B and C 

may get merged or 

remain separate

31

Importance of Choosing Initial Centroids

• If there are K ‘real’ clusters then the chance of 
selecting one centroid from each cluster is small. 

– Chance is relatively small when K is large

– If clusters are the same size, n, then

For example, if K = 10, then 

probability P = 10!/1010 = 0.00036

– Sometimes the initial centroids will readjust 
themselves in ‘right’ way, and sometimes they don’t
consider an example of five pairs of clusters
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Problems with Selecting Initial Points
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other 

have only one.
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example
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Solutions to Initial Centroids Problem

• Multiple runs

– Helps, but probability is not on your side

• Use some strategy to select the k initial centroids 
and then select among these initial centroids

– Select most widely separated 

• K-means++ is a robust way of doing this selection

– Use hierarchical clustering to determine initial 
centroids

• Bisecting K-means

– Not as susceptible to initialization issues

37

• This approach can be slower than random initialization, 
but very consistently produces better results in terms of 
SSE
– The k-means++ algorithm guarantees an approximation ratio 

O(log k) in expectation, where k is the number of centers

• To select a set of initial centroids, C, perform the 
following

1. Select an initial point at random to be the first centroid

2. For k – 1 steps

3. For each of the N points, xi, 1 ≤ i ≤ N, find the minimum squared
distance to the currently selected centroids, C1, …, Cj, 1 ≤ j < k,
i.e.,min

𝑗
d2( Cj, xi )

4. Randomly select a new centroid by choosing a point with probability

proportional to 
min
𝑗

d2( Cj, xi )

σ𝑖min
𝑗

d2( Cj, xi )
is 

5. End For
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K-means++

• Bisecting K-means algorithm

– Variant of K-means that can produce a partitional 
or a hierarchical clustering

CLUTO:  http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

39

Bisecting K-means

40

Bisecting K-means Example

Limitations of K-means

• K-means has problems when clusters are of 

differing 

– Sizes

– Densities

– Non-globular shapes

• K-means has problems when the data contains 

outliers.

– One possible solution is to remove outliers before 

clustering

41

Original Points K-means (3 Clusters)

42

Limitations of K-means: Differing Sizes
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Original Points K-means (3 Clusters)

43

Limitations of K-means: Differing Density

Original Points K-means (2 Clusters)

44

Limitations of K-means: Non-globular Shapes

Original Points K-means Clusters

• One solution is to find a large number of clusters such that each 

of them represents a part of a natural cluster. 

• But these small clusters need to be put together in a post-

processing step.

45

Overcoming K-means Limitations

Original Points K-means Clusters

46

Overcoming K-means Limitations

• One solution is to find a large number of clusters such that each 

of them represents a part of a natural cluster. 

• But these small clusters need to be put together in a post-

processing step.

Original Points K-means Clusters

47

• One solution is to find a large number of clusters such that each 

of them represents a part of a natural cluster. 

• But these small clusters need to be put together in a post-

processing step.

Overcoming K-means Limitations Hierarchical Clustering 

• Produces a set of nested clusters organized as a 

hierarchical tree

• Can be visualized as a dendrogram

– A tree like diagram that records the sequences of 

merges or splits
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Strengths of Hierarchical Clustering

• Do not have to assume any particular number of 
clusters

– Any desired number of clusters can be obtained by 
‘cutting’ the dendrogram at the proper level

• They may correspond to meaningful taxonomies

– Example in biological sciences (e.g., animal kingdom, 
phylogeny reconstruction, …)

49

Hierarchical Clustering

• Two main types of hierarchical clustering

– Agglomerative:  

• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only 
one cluster (or k clusters) left

– Divisive:  

• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains an 
individual point (or there are k clusters)

• Traditional hierarchical algorithms use a 
similarity or distance matrix

– Merge or split one cluster at a time

50

Agglomerative Clustering Algorithm

• Key Idea: 
– Successively merge closest clusters

• Basic algorithm
1. Compute the proximity matrix

2. Let each data point be a cluster

3. Repeat

4. Merge the two closest clusters

5. Update the proximity matrix

6. Until only a single cluster remains

• Key operation is the computation of the proximity 
of two clusters
– Different approaches to defining the distance between 

clusters distinguish the different algorithms
51

Steps 1 and 2 

• Start with clusters of individual points and a 

proximity matrix
p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12
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Intermediate Situation

• After some merging steps, we have some clusters 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

53

Step 4

• We want to merge the two closest clusters (C2 and C5)  

and update the proximity matrix. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

54

49 50

51 52

53 54



Copyright 2000 N. AYDIN. All rights 

reserved. 10

Step 5

• The question is “How do we update the proximity 

matrix?” 

C1

C4

C2 U C5

C3

?        ?        ?        ?    

?

?

?

C2 

U 
C5C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix

...
p1 p2 p3 p4 p9 p10 p11 p12

55

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

• MIN

• MAX

• Group Average

• Distance Between Centroids

• Other methods driven by an objective 

function

– Ward’s Method uses squared error

Proximity Matrix

56

How to Define Inter-Cluster Distance

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

• MIN

• MAX

• Group Average

• Distance Between Centroids

• Other methods driven by an objective 

function

– Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

• MIN

• MAX

• Group Average

• Distance Between Centroids

• Other methods driven by an objective 

function

– Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

• MIN

• MAX

• Group Average

• Distance Between Centroids

• Other methods driven by an objective 

function

– Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.
Proximity Matrix

• MIN

• MAX

• Group Average

• Distance Between Centroids

• Other methods driven by an objective 

function

– Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity
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MIN or Single Link 

• Proximity of two clusters is based on the two 

closest points in the different clusters

– Determined by one pair of points, i.e., by one link in 

the proximity graph

• Example:
Distance Matrix:

61

Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of MIN

Original Points Six Clusters

• Can handle non-elliptical shapes

63

Limitations of MIN

Original Points

Two Clusters

• Sensitive to noise
Three Clusters

64

MAX or Complete Linkage

• Proximity of two clusters is based on the two 

most distant points in the different clusters

– Determined by all pairs of points in the two clusters

Distance Matrix:

65

Hierarchical Clustering: MAX

Nested Clusters Dendrogram
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Strength of MAX

Original Points Two Clusters

• Less susceptible to noise

67

Limitations of MAX

Original Points Two Clusters

• Tends to break large clusters

• Biased towards globular clusters

68

Group Average

• Proximity of two clusters is the average of pairwise proximity 

between points in the two clusters.

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj

ii


=





Distance Matrix:

69

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

Hierarchical Clustering: Group Average

• Compromise between Single and Complete Link

• Strengths

– Less susceptible to noise

• Limitations

– Biased towards globular clusters

71

Cluster Similarity: Ward’s Method

• Similarity of two clusters is based on the increase 

in squared error when two clusters are merged

– Similar to group average if distance between points is 

distance squared

• Less susceptible to noise

• Biased towards globular clusters

• Hierarchical analogue of K-means

– Can be used to initialize K-means
72
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Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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Hierarchical Clustering:  Time and Space requirements

• O(N2) space since it uses the proximity matrix.  

– N is the number of points.

• O(N3) time in many cases

– There are N steps and at each step the size, N2, 

proximity matrix must be updated and searched

– Complexity can be reduced to O(N2 log(N) ) time 

with some cleverness

74

Hierarchical Clustering:  Problems and Limitations

• Once a decision is made to combine two clusters, 
it cannot be undone

• No global objective function is directly 
minimized

• Different schemes have problems with one or 
more of the following:

– Sensitivity to noise 

– Difficulty handling clusters of different sizes and 
non-globular shapes

– Breaking large clusters
75

Density Based Clustering

• Clusters are regions of high density that are 

separated from one another by regions on low 

density.

76

• DBSCAN is a density-based algorithm.
– Density = number of points within a specified radius (Eps)

– A point is a core point if it has at least a specified number of points 

(MinPts) within Eps

• These are points that are at the interior of a cluster

• Counts the point itself

– A border point is not a core point, but is in the neighborhood of a 
core point

– A noise point is any point that is not a core point or a border point 

77

DBSCAN

MinPts = 7

78

DBSCAN: Core, Border, and Noise Points

73 74

75 76

77 78
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Original Points Point types: core, 

border and noise

Eps = 10, MinPts = 4

79

DBSCAN: Core, Border and Noise Points DBSCAN Algorithm

• Form clusters using core points, and assign 

border points to one of its neighboring clusters

1: Label all points as core, border, or noise points.

2: Eliminate noise points.

3: Put an edge between all core points within a distance Eps of each other.

4: Make each group of connected core points into a separate cluster.

5: Assign each border point to one of the clusters of its associated core points

80

Original Points Clusters (dark blue points indicate noise)

• Can handle clusters of different shapes and sizes

• Resistant to noise

81

When DBSCAN Works Well

Original Points

82

When DBSCAN Does NOT Work Well

Original Points

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

• Varying densities

• High-dimensional data

83

When DBSCAN Does NOT Work Well

• Idea is that for points in a cluster, their kth nearest 
neighbors are at close distance

• Noise points have the kth nearest neighbor at farther 
distance

• So, plot sorted distance of every point to its kth nearest 
neighbor

84

DBSCAN: Determining EPS and MinPts

79 80

81 82
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Cluster Validity 

• For supervised classification we have a variety of measures to 
evaluate how good our model is
– Accuracy, precision, recall

• For cluster analysis, the analogous question is how to evaluate the 
“goodness” of the resulting clusters?

• But “clusters are in the eye of the beholder”! 
– In practice the clusters we find are defined by the clustering algorithm

• Then why do we want to evaluate them?
– To avoid finding patterns in noise

– To compare clustering algorithms

– To compare two sets of clusters

– To compare two clusters

85

Clusters found in Random Data
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• Numerical measures that are applied to judge various aspects of 

cluster validity, are classified into the following two types.

– Supervised: Used to measure the extent to which cluster labels match 

externally supplied class labels.
• Entropy 

• Often called external indices because they use information external to the data

– Unsupervised: Used to measure the goodness of a clustering structure 

without respect to external information. 
• Sum of Squared Error (SSE)

• Often called internal indices because they only use information in the data

• You can use supervised or unsupervised measures to compare clusters 

or clusterings

Measures of Cluster Validity

87

• Cluster Cohesion: 
– Measures how closely related are objects in a cluster

• Example: SSE

– Cohesion is measured by the within cluster sum of 
squares (SSE)

• Cluster Separation: 
– Measures how distinct or well-separated a cluster is 

from other clusters
• Example: Squared Error

– Separation is measured by the between cluster sum of 
squares

where 𝐶𝑖 is the size of cluster i

Unsupervised Measures: Cohesion and Separation

𝑆𝑆𝐸 =

𝑖



𝑥∈𝐶𝑖

𝑥 − 𝑚𝑖
2

𝑆𝑆𝐵 =

𝑖

𝐶𝑖 𝑚−𝑚𝑖
2

88

• Example: SSE

– SSB + SSE = constant

1 2 3 4 5
 
m1 m2

m

K=2 clusters:

K=1 cluster: 𝑆𝑆𝐸 = 1 − 3 2 + 2 − 3 2 + 4− 3 2 + 5 − 3 2 = 10

𝑆𝑆𝐵 = 4 × 3 − 3 2 = 0

𝑇𝑜𝑡𝑎𝑙 = 10 + 0 = 10

𝑆𝑆𝐸 = 1 − 1.5 2 + 2 − 1.5 2 + 4− 4.5 2 + 5 − 4.5 2 = 1

𝑆𝑆𝐵 = 2 × 3 − 1.5 2 + 2 × 4.5 − 3 2 = 9

𝑇𝑜𝑡𝑎𝑙 = 1 + 9 = 10

Unsupervised Measures: Cohesion and Separation

• A proximity graph-based approach can also be 

used for cohesion and separation.

– Cluster cohesion is the sum of the weight of all links 

within a cluster.

– Cluster separation is the sum of the weights between 

nodes in the cluster and nodes outside the cluster.

Unsupervised Measures: Cohesion and Separation

cohesion separation
90
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• Silhouette coefficient combines ideas of both cohesion and 

separation, but for individual points, as well as clusters and 

clusterings

• For an individual point, i

– Calculate a = average distance of i to the points in its cluster

– Calculate b = min (average distance of i to points in another cluster)

– The silhouette coefficient for a point is then given by 

s = (b – a) / max(a,b)   

– Value can vary between -1 and 1

– Typically ranges between 0 and 1. 

– The closer to 1 the better.

• Can calculate the average silhouette coefficient for a cluster or a 

clustering

Unsupervised Measures: Silhouette Coefficient

Distances used 

to calculate a

i

Distances used 

to calculate b

91

• Two matrices 
– Proximity Matrix

– Ideal Similarity Matrix

• One row and one column for each data point

• An entry is 1 if the associated pair of points belong to the same cluster

• An entry is 0 if the associated pair of points belongs to different clusters

• Compute the correlation between the two matrices
– Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

• High magnitude of correlation indicates that points that belong 

to the same cluster are close to each other. 

– Correlation may be positive or negative depending on whether the 

similarity matrix is a similarity or dissimilarity matrix

• Not a good measure for some density or contiguity-based 

clusters.

Measuring Cluster Validity Via Correlation

92

Measuring Cluster Validity Via Correlation

• Correlation of ideal similarity and proximity 

matrices for the K-means clusterings of the 

following well-clustered data set. 
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Measuring Cluster Validity Via Correlation

• Correlation of ideal similarity and proximity 

matrices for the K-means clusterings of the 

following random data set. 
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• Order the similarity matrix with respect to cluster labels 

and inspect visually. 
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Judging a Clustering Visually by its Similarity Matrix

• Clusters in random data are not so crisp

DBSCAN
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Judging a Clustering Visually by its Similarity Matrix
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Judging a Clustering Visually by its Similarity Matrix

• SSE is good for comparing two clusterings or two clusters

• SSE can also be used to estimate the number of clusters

Determining the Correct Number of Clusters
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Determining the Correct Number of Clusters

• SSE curve for a more complicated data set
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SSE of clusters found using K-means

99

Supervised Measures of Cluster Validity: Entropy and Purity

100

• Need a framework to interpret any measure. 

– For example, if our measure of evaluation has the 

value, 10, is that good, fair, or poor?

• Statistics provide a framework for cluster 

validity

– The more “atypical” a clustering result is, the more 

likely it represents valid structure in the data

– Compare the value of an index obtained from the 

given data with those resulting from random data. 

• If the value of the index is unlikely, then the cluster 

results are valid

101

Assessing the Significance of Cluster Validity Measures

• Example
– Compare SSE of three cohesive clusters against three clusters in random 

data
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Statistical Framework for SSE
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• Correlation of ideal similarity and proximity matrices for 

the K-means clusterings of the following two data sets. 
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Correlation is negative because it is calculated 

between a distance matrix and the ideal similarity 

matrix. Higher magnitude is better. 

Histogram of  correlation 

for 500 random data sets of 

size 100 with x and y

values  of points between 

0.2 and 0.8. 
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Statistical Framework for Correlation

• “The validation of clustering structures is the 
most difficult and frustrating part of cluster 
analysis. 

• Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only 
to those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubes

• H. Xiong and Z. Li. Clustering Validation Measures. In C. C. Aggarwal and 

C. K. Reddy, editors, Data Clustering: Algorithms and Applications, pages 

571–605. Chapman & Hall/CRC, 2013.

Final Comment on Cluster Validity
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