

1

Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction
Such valuable information can be used to support a variety of business-
related applications such as
- marketing promotions,
- inventory management
- customer relationship management.
Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules
$\{$ Diaper $\} \rightarrow\{$ Beer $\}$
\{Milk, Bread $\} \rightarrow$ EEggs,Coke\}, $\{$ Beer, Bread $\} \rightarrow\{$ Milk $\}$
Implication means co-occurrence, not causality!

3

Definition: Frequent Itemset

- Itemset

TID	Items
$\mathbf{1}$	Bread, Milk
$\mathbf{2}$	Bread, Diaper, Beer, Eggs
$\mathbf{3}$	Milk, Diaper, Beer, Coke
$\mathbf{4}$	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

- A collection of one or more items
- Example: \{Milk, Bread, Diaper\}
- k-itemset
- An itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset
E.g. $\sigma(\{$ Milk, Bread, Diaper $\})=2$
- Support
- Fraction of transactions that contain an itemset
E.g. $s(\{$ Milk, Bread, Diaper $\})=2 / 5$
- Frequent Itemset

An itemset whose support is greater than or equal to a minsup threshold

4

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

7

Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

9

Frequent Itemset Generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity $\sim \mathrm{O}(\mathrm{NMw})=>$ Expensive since $\mathrm{M}=2^{\text {d }!!!}$

Frequent Itemset Generation

10

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
- Complete search: $\mathrm{M}=2^{\mathrm{d}}$
- Use pruning techniques to reduce M
- Reduce the number of transactions (N)
- Reduce size of N as the size of itemset increases
- Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
- Use efficient data structures to store the candidates or transactions No need to match every candidate against every transaction

Reducing Number of Candidates
- Apriori principle:
- If an itemset is frequent, then all of its subsets must also
be frequent
- Apriori principle holds due to the following
property of the support measure:
$\forall X, Y:(X \subseteq Y) \Rightarrow s(X) \geq s(Y)$
\quad- Support of an itemset never exceeds the support of its subsets - This is known as the anti-monotone property of support

13

15

17

14

16

19

21

Candidate Generation: Brute-force method

Figure 5.6. A brute-force method for generating candidate 3 -itemsets.

20

22

Candidate Generation: Merge F_{k-1} and F_{1} itemsets

Figure 5.7. Generating and pruning candidate k-itemsets by merging a frequent $(k-1)$-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

Candidate Generation: $\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ Method

- Merge two frequent (k-1)-itemsets if their first (k-2) items are identical
- $\mathrm{F}_{3}=\{\mathrm{ABC}, \mathrm{ABD}, \mathrm{ABE}, \mathrm{ACD}, \mathrm{BCD}, \mathrm{BDE}, \mathrm{CDE}\}$
$-\operatorname{Merge}(\underline{A B C}, \underline{A B D})=\underline{A B C D}$
$-\operatorname{Merge}(\underline{\mathbf{A B}} \mathbf{C}, \underline{\mathbf{A B}} \mathbf{E})=\underline{\mathbf{A B}} \mathbf{C E}$
$-\operatorname{Merge}(\underline{A B D}, \underline{\mathbf{A B E}})=\underline{\mathbf{A B} D E}$
- Do not merge($\underline{\mathbf{A} B D}, \underline{\mathbf{A}} \mathbf{C D})$ because they share only prefix of length 1 instead of length 2

25
\qquad

Candidate Generation: Fk-1 x Fk-1 Method

Figure 5.8. Generating and pruning candidate k-itemsets by merging pairs of frequent $(k-1)$-itemsets.

27

28

Candidate Pruning

- Let $\mathrm{F}_{3}=\{\mathrm{ABC}, \mathrm{ABD}, \mathrm{ABE}, \mathrm{ACD}, \mathrm{BCD}, \mathrm{BDE}, \mathrm{CDE}\}$ be the set of frequent 3 -itemsets
- $\mathrm{L}_{4}=\{\mathrm{ABCD}, \mathrm{ABCE}, \mathrm{ABDE}\}$ is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
- Prune ABCE because ACE and BCE are infrequent
- Prune ABDE because ADE is infrequent
- After candidate pruning: $\mathrm{L}_{4}=\{\mathrm{ABCD}\}$

26

Alternate $\mathbf{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ Method

- Merge two frequent ($\mathrm{k}-1$)-itemsets if the last ($\mathrm{k}-2$) items of the first one is identical to the first ($\mathrm{k}-2$) items of the second.
- $\mathrm{F}_{3}=\{\mathrm{ABC}, \mathrm{ABD}, \mathrm{ABE}, \mathrm{ACD}, \mathrm{BCD}, \mathrm{BDE}, \mathrm{CDE}\}$
$-\operatorname{Merge}(\mathbf{A B C}, \underline{\mathbf{B C D}})=\mathrm{ABCD}$
$-\operatorname{Merge}(A \underline{B D}, \underline{\mathbf{B D E}})=\mathrm{ABDE}$
$-\operatorname{Merge}(A C D, ~ C D E)=A \underline{C D E}$
$-\operatorname{Merge}(B \underline{C D}, \underline{\text { CDE }})=\mathrm{BCDE}$

Candidate Pruning for Alternate $\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$ Method

- Let $\mathrm{F}_{3}=$
$\{\mathrm{ABC}, \mathrm{ABD}, \mathrm{ABE}, \mathrm{ACD}, \mathrm{BCD}, \mathrm{BDE}, \mathrm{CDE}\}$ be the set of frequent 3-itemsets
- $\mathrm{L}_{4}=\{\mathrm{ABCD}, \mathrm{ABDE}, \mathrm{ACDE}, \mathrm{BCDE}\}$ is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
- Prune ABDE because ADE is infrequent
- Prune ACDE because ACE and ADE are infrequent

Prune BCDE because BCE

- After candidate pruning: $\mathrm{L}_{4}=\{\mathrm{ABCD}\}$

31

Support Counting: An Example

Suppose you have 15 candidate itemsets of length 3:
$\{145\},\{124\},\{457\},\{125\},\{458\},\{159\},\{136\},\{234\},\{567\},\{345\},\{3$ $56\},\{357\},\left\{\begin{array}{ll}6 & 9\end{array}\right\},\left\{\begin{array}{ll}3 & 6\end{array}\right\},\left\{\begin{array}{ll}3 & 6\end{array}\right\}$
How many of these itemsets are supported by transaction ($1,2,3,5,6$)?

33

35

Support Counting of Candidate Itemsets

- To reduce number of comparisons, store the candidate itemsets in a hash structure
- Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

32

Support Counting Using a Hash Tree

Suppose you have 15 candidate itemsets of length 3:
$\{145\},\{124\},\{457\},\{125\},\{458\},\{159\},\{136\},\{234\},\{567\},\{345\},\{3$ $56\},\{357\},\left\{\begin{array}{ll}6 & 9\}\end{array}\right\},\{367\},\{368\}$
You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

34

Support Counting Using a Hash Tree

36

37

Support Counting Using a Hash Tree

39

Support Counting Using a Hash Tree

40

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $\mathrm{f} \subset \mathrm{L}$ such that $\mathrm{f} \rightarrow \mathrm{L}-\mathrm{f}$ satisfies the minimum confidence requirement
- If $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ is a frequent itemset, candidate rules:
$\mathrm{ABC} \rightarrow \mathrm{D}, \quad \mathrm{ABD} \rightarrow \mathrm{C}, \quad \mathrm{ACD} \rightarrow \mathrm{B}, \quad \mathrm{BCD} \rightarrow \mathrm{A}$,
$\mathrm{A} \rightarrow \mathrm{BCD}, \quad \mathrm{B} \rightarrow \mathrm{ACD}, \quad \mathrm{C} \rightarrow \mathrm{ABD}, \quad \mathrm{D} \rightarrow \mathrm{ABC}$
$\mathrm{AB} \rightarrow \mathrm{CD}, \quad \mathrm{AC} \rightarrow \mathrm{BD}, \quad \mathrm{AD} \rightarrow \mathrm{BC}, \quad \mathrm{BC} \rightarrow \mathrm{AD}$,
$\mathrm{BD} \rightarrow \mathrm{AC}, \quad \mathrm{CD} \rightarrow \mathrm{AB}$,
- If $|\mathrm{L}|=\mathrm{k}$, then there are $2^{\mathrm{k}}-2$ candidate association rules (ignoring $\mathrm{L} \rightarrow \varnothing$ and $\varnothing \rightarrow \mathrm{L}$)

Rule Generation

- In general, confidence does not have an antimonotone property
$\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D})$ can be larger or smaller than $\mathrm{c}(\mathrm{AB} \rightarrow \mathrm{D})$
- But confidence of rules generated from the same itemset has an anti-monotone property
- E.g., Suppose $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ is a frequent 4 -itemset:

$$
\mathrm{c}(\mathrm{ABC} \rightarrow \mathrm{D}) \geq \mathrm{c}(\mathrm{AB} \rightarrow \mathrm{CD}) \geq \mathrm{c}(\mathrm{~A} \rightarrow \mathrm{BCD})
$$

- Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

43

Association Analysis: Basic Concepts and Algorithms

Algorithms and Complexity

44

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
- Dimensionality (number of items) of the data set
- Size of database
- Average transaction width

47

46

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold
lowering support threshold results in more frequent itemsets
this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
- Size of database
- Average transaction width

TID	Hems
1	Bread, Milk
2	Beer, Bread, Diaper, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Bread, Coke, Diaper, Milk

${ }_{46}$

Factors Affecting Complexity of Apriori

- Choice of minimum support threshold lowering support threshold results in more frequent itemsets this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set

More space is needed to store support count of itemsets if number of frequent itemsets also increases, both computation and I/O costs may also increase

- Size of database
run time of algorithm increases with number of transactions
- Average transaction width

49

Factors Affecting Complexity of Apriori

4) Namber af firymer nemura

Figure s.14, Eleded \qquad

55

57

59

Closed Itemset

- An itemset X is closed if none of its immediate supersets has the same support as the itemset X.
- X is not closed if at least one of its immediate supersets has support count as X .

61

63

65

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

62

What are the Closed Itemsets in this Data?

64

67

69

Example question

- Given the following transaction data sets (dark cells indicate presence of an item in a transaction) and a support threshold of 20%, answer the following questions

DataSet: $\bar{A} \quad$ Data Set: B \quad Data Set: C
a. What is the number of frequent itemsets for each dataset? Which dataset will produce the most number of frequent itemsets?
Which dataset will produce the longest frequent itemset?
Which dataset will produce frequent itemsets with highest maximum support?
Which dataset will produce frequent itemsets containing items with widely varying support levels (i.e., What is the number of maximal frequent suport, ranging from 20% to more than 70%)? most number of maximal frequent itemsets?
What is the number of closed frequent itemsets for each dataset? Which dataset will produce the most number of closed frequent itemsets?

Pattern Evaluation

- Association rule algorithms can produce large number of rules
- Interestingness measures can be used to prune/rank the patterns
- In the original formulation, support \& confidence are the only measures used

73

Drawback of Confidence

Custo mers	Tea	Honey	\ldots
C1	0	1	\ldots
C2	1	0	\ldots
C3	1	1	\ldots
C4	1	0	\ldots
\ldots			

	Honey	$\overline{\text { Honey }}$	
Tea	100	100	200
$\overline{T e a}$	20	780	800
	120	880	1000

Association Rule: Tea \rightarrow Honey
Confidence $\cong P($ Honey \mid Tea $)=100 / 200=0.50$
Confidence $=50 \%$, which may mean that drinking tea has little influence whether honey is used or not
So rule seems uninteresting
But $P($ Honey $)=120 / 1000=.12$ (hence tea drinkers are far more likely to have honey

Drawback of Confidence

Drawback of Confidence							
Custo mers	Tea	Coffee			Coffee	$\overline{\text { Coffee }}$	
C1	0	1	\ldots	Tea	150	50	200
C2	1	0	\ldots	$\overline{T e a}$	650	150	800
C3	1	1	\ldots		800	200	1000
C4	1	0	\ldots				
..							
Association Rule: Tea \rightarrow Coffee							
Confidence $\cong P($ Coffee \mid Tea $)=150 / 200=0.75$							
Confidence $>50 \%$, meaning people who drink tea are more likely to drink coffee than not drink coffee							
So rule seems reasonable							

Drawback of Confidence							
Custo mers	Tea	Coffee			Coffee	$\overline{\text { Coffee }}$	
C1	0	1	\ldots	Tea	150	50	200
C2	1	0	\ldots	$\overline{T e a}$	650	150	800
C3	1	1	\ldots		800	200	1000
C4	1	0	\ldots				
..							
Association Rule: Tea \rightarrow Coffee							
Confidence $\cong P($ Coffee \mid Tea $)=150 / 200=0.75$							
Confidence $>50 \%$, meaning people who drink tea are more likely to drink coffee than not drink coffee							
So rule seems reasonable							

Association Rule: Tea \rightarrow Coffee

Confidence $\cong P($ Coffee \mid Tea $)=150 / 200=0.75$
Confidence $>50 \%$, meaning people who drink tea are more likely to drink coffee than not drink coffee
So rule seems reasonable

75

Computing Interestingness Measure

- Given $\mathrm{X} \rightarrow \mathrm{Y}$ or $\{\mathrm{X}, \mathrm{Y}\}$, information needed to compute interestingness can be obtained from a contingency table

Contingency table

	Y	\bar{Y}	
X	f_{11}	f_{10}	f_{1+}
Z	f_{01}	f_{00}	f_{0+}
	f_{+1}	f_{+0}	N

f_{11} : support of X and Y f_{10} : support of X and \bar{Y} f_{01} : support of X and \bar{Y} f_{00} : support of \bar{X} and \bar{Y}

Used to define various measures
\square support, confidence, Gini, entropy, etc.

74

Drawback of Confidence

	Coffee	Coffee	
Tea	150	50	200
$\overline{\text { Tea }}$	650	150	800
	800	200	1000

Association Rule: Tea \rightarrow Coffee

Confidence $=P($ Coffee \mid Tea $)=150 / 200=0.75$
but $\mathrm{P}($ Coffee $)=0.8$, which means knowing that a person drinks tea reduces the probability that the person drinks coffee!
\Rightarrow Note that $\mathrm{P}($ Coffee $\mid \overline{T e a})=650 / 800=0.8125$

Measure for Association Rules

- So, what kind of rules do we really want?
- Confidence $(\mathrm{X} \rightarrow \mathrm{Y})$ should be sufficiently high
- To ensure that people who buy X will more likely buy Y than not buy Y
- Confidence $(\mathrm{X} \rightarrow \mathrm{Y})>\operatorname{support}(\mathrm{Y})$
- Otherwise, rule will be misleading because having item X actually reduces the chance of having item Y in the same transaction
- Is there any measure that capture this constraint? - Answer: Yes. There are many of them.

Statistical Relationship between X and Y

- The criterion

$$
\text { confidence }(\mathrm{X} \rightarrow \mathrm{Y})=\operatorname{support}(\mathrm{Y})
$$

is equivalent to:
$-\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{P}(\mathrm{Y})$
$-\mathrm{P}(\mathrm{X}, \mathrm{Y})=\mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{Y})(\mathrm{X}$ and Y are independent $)$

If $\mathrm{P}(\mathrm{X}, \mathrm{Y})>\mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{Y}): \mathrm{X}$ \& Y are positively correlated
If $\mathrm{P}(\mathrm{X}, \mathrm{Y})<\mathrm{P}(\mathrm{X}) \times \mathrm{P}(\mathrm{Y}): \mathrm{X} \& \mathrm{Y}$ are negatively correlated

Measures that take into account statistical dependence
$\left.\left.\begin{array}{l}\text { Lift }=\frac{P(Y \mid X)}{P(Y)} \\ \text { Interest }=\frac{P(X, Y)}{P(X) P(Y)}\end{array}\right\} \begin{array}{l}\text { lift is used for rules while } \\ \text { interest is used for itemsets }\end{array}\right] \quad \begin{aligned} & \phi-\text { coefficient }=\frac{P(X, Y)-P(X) P(Y)}{\sqrt{P(X)[1-P(X)] P(Y)[1-P(Y)]}}\end{aligned}$

Example: Lift/Interest

	Coffee	Coffee	
Tea	150	50	200
$\overline{\text { Tea }}$	650	150	800
	800	200	1000

Association Rule: Tea \rightarrow Coffee

Confidence $=P($ Coffee \mid Tea $)=0.75$
but $\mathrm{P}($ Coffee $)=0.8$
\Rightarrow Interest $=0.15 /(0.2 \times 0.8)=0.9375(<1$, therefore is negatively associated)
So, is it enough to use confidence/Interest for pruning?

83

Property under Inversion Operation

(a)

Correlation:
IS/cosine
85 0.0

(b)
-0.1667
0.0

-0.1667

 0.825
Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female					Male	Female
High	30	20	50					
Low	40	10	50					
	70	30	100					

Mosteller:
Underlying association should be independent of
the relative number of male and female students in the samples
Odds-Ratio $\left(\left(f_{11+} f_{00}\right) /\left(f_{10+} f_{10}\right)\right)$ has this property

Property under Null Addition

$$
\begin{array}{c|c|c|c}
& B & \bar{B} & \\
\hline A & 700 & 100 & 800 \\
\bar{A} & 100 & 100 & 200 \\
\hline & 800 & 200 & 1000
\end{array} \quad \square \quad \begin{array}{cc|c|c|c}
\\
\hline & & \begin{array}{c}
A \\
A
\end{array} & 700 & 10 \\
1100 & 1200 \\
\hline & & 800 & 1200 & 2000
\end{array}
$$

Invariant measures:

- cosine, Jaccard, All-confidence, confidence

Non-invariant measures:

- correlation, Interest/Lift, odds ratio, etc

Simpson's Paradox

- Observed relationship in data may be influenced by the presence of other confounding factors (hidden variables)
- Hidden variables may cause the observed relationship to disappear or reverse its direction!
- Proper stratification is needed to avoid generating spurious patterns

Simpson's Paradox

- Recovery rate from Covid
- Hospital A: 80\%
- Hospital B: 90%
- Which hospital is better?

Simpson's Paradox

- Recovery rate from Covid
- Hospital A: 80\%
- Hospital B: 90%
- Which hospital is better?
- Covid recovery rate on older population
- Hospital A: 50\%
- Hospital B: 30\%
- Covid recovery rate on younger population
- Hospital A: 99\%
- Hospital B: 98\%

92

Simpson's Paradox

- Covid-19 death: (per 100,000 of population)
- County A: 15
- County B: 10
- Which state is managing the pandemic better?

93

Simpson's Paradox

- Covid-19 death: (per 100,000 of population)
- County A: 15
- County B: 10
- Which state is managing the pandemic better?
- Covid death rate on older population
- County A: 20
- County B: 40
- Covid death rate on younger population
- County A: 2
- County B: 5

94

Effect of Support Distribution on Association Mining

- Many real data sets have skewed support

95

Effect of Support Distribution

- Difficult to set the appropriate minsup threshold
- If minsup is too high, we could miss itemsets involving interesting rare items (e.g., \{caviar, vodka\})
- If minsup is too low, it is computationally expensive and the number of itemsets is very large

97

Confidence and Cross-Support Patterns

99
${ }_{99}$

H-Confidence

- To avoid patterns whose items have very different support, define a new evaluation measure for itemsets
- Known as h-confidence or all-confidence
- Specifically, given an itemset $X=\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$
h-confidence is the minimum confidence of any association rule formed from itemset X
$-\operatorname{hconf}(X)=\min \left(\operatorname{conf}\left(X_{1} \rightarrow X_{2}\right)\right)$,
where $X_{1}, X_{2} \subset X, X_{1} \cap X_{2}=\emptyset, X_{1} \cup X_{2}=X$
For example: $X_{1}=\left\{x_{1}, x_{2}\right\}, X_{2}=\left\{x_{3}, \ldots, x_{d}\right\}$

H-Confidence ...

- But, given an itemset $X=\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$
- What is the lowest confidence rule you can obtain from X ?
- Recall $\operatorname{conf}\left(X_{1} \rightarrow X_{2}\right)=s\left(X_{1} \cup X_{2}\right) / \operatorname{support}\left(X_{1}\right)$
- The numerator is fixed: $s\left(X_{1} \cup X_{2}\right)=s(X)$
- Thus, to find the lowest confidence rule, we need to find the
X_{1} with highest support
- Consider only rules where X_{1} is a single item, i.e., $\underset{\left\{x_{d}\right\}}{\left\{x_{1}\right\}} \rightarrow X-\left\{x_{1}\right\},\left\{x_{2}\right\} \rightarrow X-\left\{x_{2}\right\}, \ldots$, or $\left\{x_{d}\right\} \rightarrow X-$

$$
\operatorname{hconf}(X)=\min \left\{\frac{s(X)}{s\left(x_{1}\right)}, \frac{s(X)}{s\left(x_{2}\right)}, \ldots, \frac{s(X)}{s\left(x_{d}\right)}\right\}
$$

A Measure of Cross Support

Given an itemset, $X=\left\{x_{1}, x_{2}, \ldots, x_{d}\right\}$, with d items, we can define a measure of cross support, r, for the itemset

$$
r(X)=\frac{\min \left\{s\left(x_{1}\right), s\left(x_{2}\right), \ldots, s\left(x_{d}\right)\right\}}{\max \left\{s\left(x_{1}\right), s\left(x_{2}\right), \ldots, s\left(x_{d}\right)\right\}}
$$

where $s\left(x_{i}\right)$ is the support of item x_{i}

- Can use $r(X)$ to prune cross support patterns

98

$$
=\frac{s(X)}{\max \left\{s\left(x_{1}\right), s\left(x_{2}\right), \ldots, s\left(x_{d}\right)\right\}}
$$

Cross Support and H-confidence ...

- Since, $\operatorname{hconf}(X) \leq r(X)$, we can eliminate cross support patterns by finding patterns with h-confidence < h_{c}, a user set threshold
- Notice that

$$
0 \leq \operatorname{hconf}(X) \leq r(X) \leq 1
$$

- Any itemset satisfying a given h-confidence threshold, h_{c}, is called a hyperclique
- H-confidence can be used instead of or in conjunction with support

Example Applications of Hypercliques

- Hypercliques are used to find strongly coherent groups of items
- h-confidence gives us information about their pairwise

Jaccard and cosine similarity

- Assume x_{1} and x_{2} are any two items in an itemset X
- $\operatorname{Jaccard}\left(x_{1}, x_{2}\right) \geq \operatorname{hconf}(X) / 2$
- $\cos \left(x_{1}, x_{2}\right) \geq \operatorname{hconf}(X)$
- Hypercliques that have a high h-confidence consist of very similar items as measured by Jaccard and cosine
- The items in a hyperclique cannot have widely different support
- Allows for more efficient pruning

Properties of Hypercliques

- Hypercliques are itemsets, but not necessarily frequent itemsets
- Good for finding low support patterns
- H-confidence is anti-monotone
- Can define closed and maximal hypercliques in terms of h-confidence
- A hyperclique X is closed if none of its immediate supersets has the same h -confidence as X
- A hyperclique X is maximal if $\operatorname{hconf}(X) \leq \mathrm{h}_{\mathrm{c}}$ and none of its immediate supersets, Y, have $\operatorname{hconf}(Y) \leq \mathrm{h}_{\mathrm{c}}$
together in documents
- Proteins in a protein interaction network In the figure at the right, a gene ontology hierarchy for biological process shows that the identified proteins in the hyperclique (PRE2, ..., SCL1) perform the same function and are involved in the same biological process

106
\square

