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Data Mining

Classification: Alternative Techniques 
• Outline

– Types of Classifiers

– Rule-Based Classifier

– Nearest Neighbor Classifiers

– Naïve Bayes Classifier

– Bayesian Networks

– Logistic Regression

– Artificial Neural Network (ANN)

– Deep Learning

– Support Vector Machine (SVM)

– Ensemble Methods

– Class Imbalance Problem

– Multiclass Problem

Types of Classifiers

• One way to distinguish classifiers is by 
considering the characteristics of their output

– Binary versus Multiclass

• Binary classifiers assign each data instance to one of two 
possible labels, typically denoted as +1 and -1 

• If there are more than two possible labels available, then 
the technique is known as a multiclass classifier

– Deterministic versus Probabilistic

• A deterministic classifier produces a discrete-valued label 
to each data instance it classifies 

• A probabilistic classifier assigns a continuous score 
between 0 and 1 to indicate how likely it is that an instance 
belongs to a particular class
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Types of Classifiers

– Linear versus Nonlinear

• A linear classifier uses a linear separating hyperplane to 
discriminate instances from different classes 

• A nonlinear classifier enables the construction of more complex, 
nonlinear decision surfaces.

– Global versus Local

• A global classifier fits a single model to the entire data set. 

• A local classifier partitions the input space into smaller regions 
and fits a distinct model to training instances in each region.

– Generative versus Discriminative

• Classifiers that learn a generative model of every class in the 
process of predicting class labels are known as generative 
classifiers

• Discriminative classifiers directly predict the class labels
without explicitly describing the distribution of every class label
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Rule-Based Classifier
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Rule-Based Classifier

• Classify records by using a collection of 

“if…then…” rules

• Rule:    (Condition)  y

– where 

• Condition is a conjunction of tests on attributes  

• y is the class label

– Examples of classification rules:

• (Blood Type=Warm)  (Lay Eggs=Yes)  Birds

• (Taxable Income < 50K)  (Refund=Yes)  Evade=No
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Rule-based Classifier (Example)

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians

Name Blood Type Give Birth Can Fly Live in Water Class

human warm yes no no mammals
python cold no no no reptiles
salmon cold no no yes fishes
whale warm yes no yes mammals
frog cold no no sometimes amphibians
komodo cold no no no reptiles
bat warm yes yes no mammals
pigeon warm no yes no birds
cat warm yes no no mammals
leopard shark cold yes no yes fishes
turtle cold no no sometimes reptiles
penguin warm no no sometimes birds
porcupine warm yes no no mammals
eel cold no no yes fishes
salamander cold no no sometimes amphibians
gila monster cold no no no reptiles
platypus warm no no no mammals
owl warm no yes no birds
dolphin warm yes no yes mammals
eagle warm no yes no birds
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Application of Rule-Based Classifier

• A rule r covers an instance x if the attributes of 

the instance satisfy the condition of the rule

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians 

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

Name Blood Type Give Birth Can Fly Live in Water Class

hawk warm no yes no ?
grizzly bear warm yes no no ?
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Rule Coverage and Accuracy

• Coverage of a rule:

– Fraction of records 

that satisfy the 

antecedent of a rule

• Accuracy of a rule:

– Fraction of records 

that satisfy the 

antecedent that also 

satisfy the consequent 

of a rule

Tid Refund Marital 
Status 

Taxable 
Income Class 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

(Status=Single)  No

Coverage = 40%,  Accuracy = 50%
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How does Rule-based Classifier Work?

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians 

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Name Blood Type Give Birth Can Fly Live in Water Class

lemur warm yes no no ?
turtle cold no no sometimes ?
dogfish shark cold yes no yes ?
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Characteristics of Rule Sets: Strategy 1

• Mutually exclusive rules

– Classifier contains mutually exclusive rules if the 

rules are independent of each other

– Every record is covered by at most one rule

• Exhaustive rules

– Classifier has exhaustive coverage if it accounts for 

every possible combination of attribute values

– Each record is covered by at least one rule
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Characteristics of Rule Sets: Strategy 2

• Rules are not mutually exclusive

– A record may trigger more than one rule

– Solution?

• Ordered rule set

• Unordered rule set – use voting schemes

• Rules are not exhaustive

– A record may not trigger any rules

– Solution?

• Use a default class

12
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Ordered Rule Set

• Rules are rank ordered according to their priority
– An ordered rule set is known as a decision list

• When a test record is presented to the classifier 
– It is assigned to the class label of the highest ranked rule it has triggered

– If none of the rules fired, it is assigned to the default class

R1: (Give Birth = no)  (Can Fly = yes)  Birds

R2: (Give Birth = no)  (Live in Water = yes)  Fishes

R3: (Give Birth = yes)  (Blood Type = warm)  Mammals

R4: (Give Birth = no)  (Can Fly = no)  Reptiles

R5: (Live in Water = sometimes)  Amphibians 

Name Blood Type Give Birth Can Fly Live in Water Class

turtle cold no no sometimes ?
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Rule Ordering Schemes

• Rule-based ordering
– Individual rules are ranked based on their quality

• Class-based ordering
– Rules that belong to the same class appear together

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},

Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced},

Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced},

Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced},

Taxable Income>80K) ==> Yes
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Building Classification Rules

• Direct Method: 

• Extract rules directly from data

• Examples: RIPPER, CN2, Holte’s 1R

• Indirect Method:

• Extract rules from other classification models (e.g. 

decision trees, neural networks, etc).

• Examples: C4.5rules
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Direct Method: Sequential Covering

1. Start from an empty rule

2. Grow a rule using the Learn-One-Rule function

3. Remove training records covered by the rule

4. Repeat Step (2) and (3) until stopping criterion 

is met 
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Example of Sequential Covering

(i) Original Data (ii) Step 1
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Example of Sequential Covering…

(iii) Step 2

R1

(iv) Step 3

R1

R2

18



Copyright 2000 N. AYDIN. All rights 

reserved. 4

Rule Growing

• Two common strategies 

Status =

Single

Status =

Divorced
Status =

Married

Income

> 80K
...

Yes: 3

No:  4{ }

Yes: 0

No:  3

Refund=

No

Yes: 3

No:  4

Yes: 2

No:  1

Yes: 1

No:  0

Yes: 3

No:  1

(a) General-to-specific

Refund=No,

Status=Single,

Income=85K

(Class=Yes)

Refund=No,

Status=Single,

Income=90K

(Class=Yes)

Refund=No,

Status = Single

(Class = Yes)

(b) Specific-to-general

Rule Evaluation

• Foil’s Information Gain

– R0:  {} => class   (initial rule)

– R1:  {A} => class (rule after adding conjunct)

–

– 𝑝0: number of positive instances covered by R0

𝑛0: number of negative instances covered by R0

𝑝1: number of positive instances covered by R1

𝑛1: number of negative instances covered by R1

FOIL: First Order 

Inductive Learner –

an early rule-based 

learning algorithm

𝐺𝑎𝑖𝑛 𝑅0, 𝑅1 = 𝑝1 × [ 𝑙𝑜𝑔2
𝑝1

𝑝1+ 𝑛1
− 𝑙𝑜𝑔2

𝑝0
𝑝0+ 𝑛0

]
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Direct Method: RIPPER

• For 2-class problem, choose one of the classes as positive class, 

and the other as negative class

– Learn rules for positive class

– Negative class will be default class

• For multi-class problem

– Order the classes according to increasing class prevalence 

(fraction of instances that belong to a particular class)

– Learn the rule set for smallest class first, treat the rest as 

negative class

– Repeat with next smallest class as positive class
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Direct Method: RIPPER

• Growing a rule:

– Start from empty rule

– Add conjuncts as long as they improve FOIL’s information 
gain

– Stop when rule no longer covers negative examples

– Prune the rule immediately using incremental reduced error 
pruning

– Measure for pruning:   v = (p-n)/(p+n)
• p: number of positive examples covered by the rule in

the validation set

• n: number of negative examples covered by the rule in
the validation set

– Pruning method: delete any final sequence of conditions that 
maximizes v
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Direct Method: RIPPER

• Building a Rule Set:

– Use sequential covering algorithm

• Finds the best rule that covers the current set of positive 

examples

• Eliminate both positive and negative examples covered by 

the rule

– Each time a rule is added to the rule set, compute the 

new description length

• Stop adding new rules when the new description length is 

d bits longer than the smallest description length obtained 

so far
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Direct Method: RIPPER

• Optimize the rule set:

– For each rule r in the rule set R

• Consider 2 alternative rules:

– Replacement rule (r*): grow new rule from scratch

– Revised rule(r′): add conjuncts to extend the rule r 

• Compare the rule set for r against the rule set for r* 

and r′ 

• Choose rule set that minimizes MDL principle

– Repeat rule generation and rule optimization for the 

remaining positive examples

24
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Indirect Methods

Rule Set

r1: (P=No,Q=No) ==> -
r2: (P=No,Q=Yes) ==> +

r3: (P=Yes,R=No) ==> +

r4: (P=Yes,R=Yes,Q=No) ==> -

r5: (P=Yes,R=Yes,Q=Yes) ==> +

P

Q R

Q- + +

- +

No No

No

Yes Yes

Yes

No Yes
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Indirect Method: C4.5rules

• Extract rules from an unpruned decision tree

• For each rule, r: A  y, 

– consider an alternative rule r′: A′  y where A′ is 
obtained by removing one of the conjuncts in A

– Compare the pessimistic error rate for r against all r’s

– Prune if one of the alternative rules has lower 
pessimistic error rate

– Repeat until we can no longer improve generalization 
error
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Indirect Method: C4.5rules

• Instead of ordering the rules, order subsets of 

rules (class ordering)

– Each subset is a collection of rules with the same rule 

consequent (class)

– Compute description length of each subset

• Description length = L(error) + g L(model)

• g is a parameter that takes into account the presence of 

redundant attributes in a rule set 

(default value = 0.5)
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Example

Name Give Birth Lay Eggs Can Fly Live in Water Have Legs Class

human yes no no no yes mammals

python no yes no no no reptiles

salmon no yes no yes no fishes

whale yes no no yes no mammals

frog no yes no sometimes yes amphibians

komodo no yes no no yes reptiles

bat yes no yes no yes mammals

pigeon no yes yes no yes birds

cat yes no no no yes mammals

leopard shark yes no no yes no fishes

turtle no yes no sometimes yes reptiles

penguin no yes no sometimes yes birds

porcupine yes no no no yes mammals

eel no yes no yes no fishes

salamander no yes no sometimes yes amphibians

gila monster no yes no no yes reptiles

platypus no yes no no yes mammals

owl no yes yes no yes birds

dolphin yes no no yes no mammals

eagle no yes yes no yes birds
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C4.5 versus C4.5rules versus RIPPER

C4.5rules:

(Give Birth=No, Can Fly=Yes)  Birds

(Give Birth=No, Live in Water=Yes)  Fishes

(Give Birth=Yes)  Mammals

(Give Birth=No, Can Fly=No, Live in Water=No)  Reptiles

( )  Amphibians

Give

Birth?

Live In

Water?

Can

Fly?

Mammals

Fishes Amphibians

Birds Reptiles

Yes No

Yes

Sometimes

No

Yes No

RIPPER:

(Live in Water=Yes)  Fishes

(Have Legs=No)  Reptiles

(Give Birth=No, Can Fly=No, Live In Water=No) 

 Reptiles

(Can Fly=Yes,Give Birth=No)  Birds

()  Mammals
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C4.5 versus C4.5rules versus RIPPER

PREDICTED CLASS

 Amphibians Fishes Reptiles Birds Mammals

ACTUAL Amphibians 0 0 0 0 2

CLASS Fishes 0 3 0 0 0

Reptiles 0 0 3 0 1

Birds 0 0 1 2 1

Mammals 0 2 1 0 4

PREDICTED CLASS

 Amphibians Fishes Reptiles Birds Mammals

ACTUAL Amphibians 2 0 0 0 0

CLASS Fishes 0 2 0 0 1

Reptiles 1 0 3 0 0

Birds 1 0 0 3 0

Mammals 0 0 1 0 6

C4.5 and C4.5rules:

RIPPER:

30
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Advantages of Rule-Based Classifiers

• Has characteristics quite similar to decision trees

– As highly expressive as decision trees

– Easy to interpret (if rules are ordered by class)

– Performance comparable to decision trees
• Can handle redundant and irrelevant attributes

• Variable interaction can cause issues (e.g., X-OR problem)

• Better suited for handling imbalanced classes

• Harder to handle missing values in the test set

31 32

Nearest Neighbor Classifiers

• Basic idea:

– If it walks like a duck, quacks like a duck, then it’s 

probably a duck

Training 

Records

Test 

Record

Compute 

Distance

Choose k of the 

“nearest” records

33

Nearest-Neighbor Classifiers

• Requires the following:

– A set of labeled records

– Proximity metric to 
compute distance/similarity 
between a pair of records 

• e.g., Euclidean distance

– The value of k, the number 
of nearest neighbors to 
retrieve

– A method for using class 
labels of K nearest 
neighbors to determine the 
class label of unknown 
record (e.g., by taking 
majority vote)

34

Unknown record

How to Determine the class label of a Test Sample?

• Take the majority vote of class labels among the 

k-nearest neighbors

• Weight the vote according to distance

– weight factor, 𝑤 = 1/𝑑2

35

Choice of proximity measure matters

• For documents, cosine is better than correlation or Euclidean

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0

vs

Euclidean distance = 1.4142  for both pairs, but 

the cosine similarity  measure has different 

values for these pairs.

36
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Nearest Neighbor Classification…

• Data preprocessing is often required

– Attributes may have to be scaled to prevent distance measures 

from being dominated by one of the attributes

• Example:

– height of a person may vary from 1.5m to 1.8m

– weight of a person may vary from 90lb to 300lb

– income of a person may vary from $10K to $1M

– Time series are often standardized to have 0 means a 

standard deviation of 1
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Nearest Neighbor Classification…

• Choosing the value of k:

– If k is too small, sensitive to noise points

– If k is too large, neighborhood may include points from other 

classes

X

38

Nearest-neighbor classifiers

1-nn decision boundary is 

a Voronoi Diagram

 Nearest neighbor
classifiers are local 

classifiers

 They can produce 

decision boundaries of 

arbitrary shapes. 
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Nearest Neighbor Classification…

• How to handle missing values in training and 

test sets?

– Proximity computations normally require the 

presence of all attributes

– Some approaches use the subset of attributes present 

in two instances  

• This may not produce good results since it effectively uses 

different  proximity measures for each pair of instances

• Thus, proximities are not comparable

40

K-NN Classificiers…

Handling Irrelevant and Redundant Attributes

– Irrelevant attributes add noise to the proximity measure

– Redundant attributes bias the proximity measure towards certain attributes

41

K-NN Classifiers: Handling attributes that are interacting

42
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Handling attributes that are interacting

43

Improving KNN Efficiency

• Avoid having to compute distance to all objects 

in the training set

– Multi-dimensional access methods (k-d trees)  

– Fast approximate similarity search

– Locality Sensitive Hashing (LSH) 

• Condensing

– Determine a smaller set of objects that give the same 

performance

• Editing

– Remove objects to improve efficiency 

44
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Bayes Classifier

• A probabilistic framework for solving 

classification problems

• Conditional Probability:

• Bayes theorem:
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Using Bayes Theorem for 

Classification
• Consider each attribute and class label 

as random variables

• Given a record with attributes (X1, 

X2,…, Xd), the goal  is to predict class Y

– Specifically, we want to find the value of Y 

that maximizes P(Y| X1, X2,…, Xd )

• Can we estimate P(Y| X1, X2,…, Xd ) 

directly from data?

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Using Bayes Theorem for Classification

• Approach:

– compute posterior probability P(Y | X1, X2, …, Xd) using the 
Bayes theorem

– Maximum a-posteriori: Choose Y that maximizes 
P(Y | X1, X2, …, Xd)

– Equivalent to choosing value of Y that maximizes
P(X1, X2, …, Xd|Y) P(Y)

• How to estimate P(X1, X2, …, Xd | Y )?
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Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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120K)IncomeDivorced,No,Refund( X

Given a Test Record:

• We need to estimate

P(Evade = Yes | X) and P(Evade = No | X)

In the following we will replace 

Evade = Yes by Yes, and 

Evade = No by No

49

Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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120K)IncomeDivorced,No,Refund( X

Given a Test Record:
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Conditional Independence

• X and Y are conditionally independent given Z if 

P(X|YZ) = P(X|Z)

• Example: Arm length and reading skills 

– Young child has shorter arm length and limited 

reading skills, compared to adults

– If age is fixed, no apparent relationship between arm 

length and reading skills

– Arm length and reading skills are conditionally 

independent given age
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Naïve Bayes Classifier

• Assume independence among attributes Xi when class is given:    

– P(X1, X2, …, Xd |Yj) = P(X1| Yj) P(X2| Yj)… P(Xd| Yj)

– Now we can estimate P(Xi| Yj) for all Xi and Yj combinations 

from the training data

– New point is classified to Yj if  P(Yj)  P(Xi| Yj)  is maximal.

52

Naïve Bayes on Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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120K)IncomeDivorced,No,Refund( X

Given a Test Record:

P(X | Yes) = 

P(Refund = No | Yes) x 

P(Divorced | Yes) x 

P(Income = 120K | Yes)

P(X | No) = 

P(Refund = No | No) x 

P(Divorced | No) x 

P(Income = 120K | No)

53

Estimate Probabilities from Data

• P(y) = fraction of instances of class y

– e.g.,  P(No) = 7/10, 
P(Yes) = 3/10

• For categorical attributes:

P(Xi =c| y) = nc/ n

– where |Xi =c| is number of 
instances having attribute value 
Xi =c and belonging to class y

– Examples:

P(Status=Married|No) = 4/7
P(Refund=Yes|Yes)=0

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Estimate Probabilities from Data

• For continuous attributes: 

– Discretization: Partition the range into bins:

 Replace continuous value with bin value

– Attribute changed from continuous to ordinal

– Probability density estimation:

 Assume attribute follows a normal distribution

 Use data to estimate parameters of distribution 

(e.g., mean and standard deviation)

 Once probability distribution is known, use it to estimate 

the conditional probability P(Xi|Y)

55

Estimate Probabilities from Data

• Normal distribution:

– One for each (Xi,Yi) pair

• For (Income, Class=No):

– If Class=No

 sample mean = 110

 sample variance = 2975

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Example of Naïve Bayes Classifier

120K)IncomeDivorced,No,Refund( X

• P(X | No) = P(Refund=No | No)

 P(Divorced | No)

 P(Income=120K | No)

= 4/7  1/7  0.0072 = 0.0006

• P(X | Yes) = P(Refund=No | Yes)

 P(Divorced | Yes)

 P(Income=120K | Yes)

= 1  1/3  1.2  10-9 = 4  10-10

Since P(X|No)P(No) > P(X|Yes)P(Yes)

Therefore P(No|X) > P(Yes|X)

=> Class = No

Given a Test Record:

Naïve  Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110
sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25
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Naïve Bayes Classifier can make decisions with partial 

information about attributes in the test record

P(Yes) = 3/10

P(No) = 7/10

If we only know that marital status is Divorced, then:

P(Yes | Divorced) = 1/3 x 3/10 / P(Divorced)

P(No | Divorced) = 1/7 x 7/10 / P(Divorced)

If we also know that Refund = No, then

P(Yes | Refund = No, Divorced) = 1 x 1/3 x 3/10 / 

P(Divorced, Refund = No)

P(No | Refund = No, Divorced) = 4/7 x 1/7 x 7/10 /    

P(Divorced, Refund = No)

If we also know that Taxable Income = 120, then

P(Yes | Refund = No, Divorced, Income = 120) =

1.2 x10-9 x  1 x 1/3 x 3/10 /     

P(Divorced, Refund = No,  Income = 120 )

P(No | Refund = No, Divorced Income = 120) = 

0.0072  x 4/7 x 1/7 x 7/10 /                

P(Divorced, Refund = No, Income = 120)

Even in absence of information 

about any attributes, we can use 
Apriori Probabilities of Class 

Variable:

Naïve  Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110
sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25
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Issues with Naïve Bayes Classifier

P(Yes) = 3/10

P(No) = 7/10

P(Yes | Married) = 0 x 3/10 / P(Married)

P(No | Married) = 4/7 x 7/10 / P(Married)

Naïve  Bayes Classifier:

P(Refund = Yes | No) = 3/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/7

P(Marital Status = Divorced | No) = 1/7

P(Marital Status = Married | No) = 4/7

P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0

For Taxable Income:

If class = No: sample mean = 110
sample variance = 2975

If class = Yes: sample mean = 90

sample variance = 25

X = (Married)

Given a Test Record:
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Issues with Naïve Bayes Classifier

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

cate
goric
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cate
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contin
uous

cla
ss

Naïve  Bayes Classifier:

P(Refund = Yes | No) = 2/6

P(Refund = No | No) = 4/6

P(Refund = Yes | Yes) = 0

P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/6

P(Marital Status = Divorced | No) = 0

P(Marital Status = Married | No) = 4/6

P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3

P(Marital Status = Married | Yes) = 0/3

For Taxable Income:

If class = No: sample mean = 91

sample variance = 685
If class = No: sample mean = 90

sample variance = 25

Consider the table with Tid = 7 deleted

Given X = (Refund = Yes, Divorced, 120K)

P(X | No) = 2/6 X 0 X 0.0083 = 0

P(X | Yes) = 0 X 1/3 X 1.2 X 10-9 = 0

Naïve Bayes will not be able to 

classify X as Yes or No!
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Issues with Naïve Bayes Classifier

• If one of the conditional probabilities is zero, 

then the entire expression becomes zero

• Need to use other estimates of conditional probabilities than 

simple fractions

• Probability estimation:

n: number of training 

instances belonging to class y

nc: number of instances with 

Xi = c and Y = y

v: total number of attribute 

values that Xi can take

p: initial estimate of 

(P(Xi = c|y) known apriori

m: hyper-parameter for our 

confidence in p

Laplace Estimate: 𝑃 𝑋𝑖 = 𝑐 𝑦) =
𝑛𝑐 + 1

𝑛 + 𝑣

m − estimate: 𝑃 𝑋𝑖 = 𝑐 𝑦) =
𝑛𝑐 +𝑚𝑝

𝑛 + 𝑚

original: 𝑃 𝑋𝑖 = 𝑐 𝑦) =
𝑛𝑐
𝑛
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Example of Naïve Bayes Classifier

Name Give Birth Can Fly Live in Water Have Legs Class

human yes no no yes mammals

python no no no no non-mammals

salmon no no yes no non-mammals

whale yes no yes no mammals

frog no no sometimes yes non-mammals

komodo no no no yes non-mammals

bat yes yes no yes mammals

pigeon no yes no yes non-mammals

cat yes no no yes mammals

leopard shark yes no yes no non-mammals

turtle no no sometimes yes non-mammals

penguin no no sometimes yes non-mammals

porcupine yes no no yes mammals

eel no no yes no non-mammals

salamander no no sometimes yes non-mammals

gila monster no no no yes non-mammals

platypus no no no yes mammals

owl no yes no yes non-mammals

dolphin yes no yes no mammals

eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class

yes no yes no ?

0027.0
20

13
004.0)()|(

021.0
20

7
06.0)()|(

0042.0
13

4

13

3

13

10

13

1
)|(

06.0
7

2

7

2

7

6

7

6
)|(









NPNAP

MPMAP

NAP

MAP

A: attributes

M: mammals

N: non-mammals

P(A|M)P(M) > P(A|N)P(N)

=> Mammals
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Naïve Bayes (Summary)

• Robust to isolated noise points

• Handle missing values by ignoring the instance 
during probability estimate calculations

• Robust to irrelevant attributes

• Redundant and correlated attributes will violate 
class conditional assumption

– Use other techniques such as Bayesian Belief Networks 
(BBN)
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Naïve Bayes

• How does Naïve Bayes perform on the following dataset?

Conditional independence of attributes is violated

64

Bayesian Belief Networks

• Provides graphical representation of probabilistic 

relationships among a set of random variables

• Consists of:

– A directed acyclic graph (dag)

 Node corresponds to a variable

 Arc corresponds to dependence 

relationship between a pair of variables

– A probability table associating each node to its 

immediate parent

A B

C

65

Conditional Independence

• A node in a Bayesian network is conditionally 

independent of all of its nondescendants, if its 

parents are known

A B

C

D

D is parent of C

A is child of C

B is descendant of D

D is ancestor of A

66
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Conditional Independence

• Naïve Bayes assumption:

...X
1

X
2

X
3

X
4

y

X
d
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Probability Tables

• If X does not have any parents, table contains 

prior probability P(X)

• If X has only one parent (Y), table contains 

conditional probability P(X|Y)

• If X has multiple parents (Y1, Y2,…, Yk), table 

contains conditional probability P(X|Y1, Y2,…, 

Yk)

Y

X

68

Example of Bayesian Belief Network

Exercise Diet

Heart 
Disease

Chest Pain
Blood 

Pressure

Exercise=Yes 0.7

Exercise=No 0.3

Diet=Healthy 0.25

Diet=Unhealthy 0.75

 

D=Healthy 

E=Yes

D=Healthy 

E=No

D=Unhealthy 

E=Yes

D=Unhealthy 

E=No

HD=Yes 0.25 0.45 0.55 0.75

HD=No 0.75 0.55 0.45 0.25

 HD=Yes HD=No

CP=Yes 0.8 0.01

CP=No 0.2 0.99

 HD=Yes HD=No

BP=High 0.85 0.2

BP=Low 0.15 0.8
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Example of Inferencing using BBN

• Given: X = (E=No, D=Yes, CP=Yes, BP=High)

– Compute P(HD|E,D,CP,BP)?

• P(HD=Yes| E=No,D=Yes) = 0.55

P(CP=Yes| HD=Yes) = 0.8

P(BP=High| HD=Yes) = 0.85

– P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) 

 0.55  0.8  0.85 = 0.374

• P(HD=No| E=No,D=Yes) = 0.45

P(CP=Yes| HD=No) = 0.01

P(BP=High| HD=No) = 0.2

– P(HD=No|E=No,D=Yes,CP=Yes,BP=High) 

 0.45  0.01  0.2 = 0.0009

Classify X 

as Yes

70
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Artificial Neural Networks (ANN)

• Basic Idea: A complex non-linear function can be learned 

as a composition of simple processing units 

• ANN is a collection of simple processing units (nodes) 

that are connected by directed links (edges)

– Every node receives signals from incoming edges, performs 

computations, and transmits signals to outgoing edges

– Analogous to human brain where nodes are neurons and signals are 

electrical impulses

– Weight of an edge determines the strength of connection between the 

nodes

• Simplest ANN: Perceptron (single neuron)

72
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Basic Architecture of Perceptron

 Learns linear decision boundaries

 Related to logistic regression (activation function is sign 

instead of sigmoid)

Activation Function

73

Perceptron Example

X1 X2 X3 Y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1

X
1

X
2

X
3

Y

Black box

Output

Input

Output Y is 1 if at least two of the three inputs are equal to 1.

74

Perceptron Example

X1 X2 X3 Y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1



X
1

X
2

X
3

Y

Black box

0.3

0.3

0.3 t=0.4

Output

node

Input

nodes












 0   if1

0  if1
)( where

)4.03.03.03.0( 321

x

x
xsign

XXXsignY
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Perceptron Learning Rule

• Initialize the weights (w0, w1, …, wd)

• Repeat

– For each training example (xi, yi)

• Compute  𝑦𝑖
• Update the weights: 

• Until stopping condition is met

• k: iteration number; 𝜆: learning rate 

76

Perceptron Learning Rule

• Weight update formula:

• Intuition:

– Update weight based on error: e =  
• If y =  𝑦, e=0: no update needed

• If y >  𝑦, e=2: weight must be increased (assuming Xij is positive) so  

that   𝑦 will increase

• If y <  𝑦, e=-2: weight must be decreased (assuming Xij is positive) 

so that   𝑦 will decrease
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Example of Perceptron Learning

X1 X2 X3 Y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1

Epoch w0 w1 w2 w3

0 0 0 0 0

1 -0.2 0 0.2 0.2

2 -0.2 0 0.4 0.2

3 -0.4 0 0.4 0.2

4 -0.4 0.2 0.4 0.4

5 -0.6 0.2 0.4 0.2

6 -0.6 0.4 0.4 0.2

1.0

 w0 w1 w2 w3

0 0 0 0 0

1 -0.2 -0.2 0 0

2 0 0 0 0.2

3 0 0 0 0.2

4 0 0 0 0.2

5 -0.2 0 0 0

6 -0.2 0 0 0

7 0 0 0.2 0.2

8 -0.2 0 0.2 0.2

Weight updates over first epoch

Weight updates over 

all epochs
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Perceptron Learning

• Since y is a linear 
combination of input 
variables, decision 
boundary is linear

79

Nonlinearly Separable Data

x1 x2 y

0 0 -1

1 0 1

0 1 1

1 1 -1

21 xxy 
XOR Data

For nonlinearly separable problems, perceptron learning 
algorithm will fail because no linear hyperplane can 
separate the data perfectly 

80

Multi-layer Neural Network

Input

Layer

Hidden

Layer

Output

Layer

x
1

x
2

x
3

x
4

x
5

y

• More than one hidden layer of 

computing nodes

• Every node in a hidden layer 

operates on activations from 

preceding layer and transmits 

activations forward to nodes of 

next layer

• Also referred to as “feedforward 

neural networks”
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Multi-layer Neural Network

• Multi-layer neural networks with at least one 

hidden layer can solve any type of classification 

task involving nonlinear decision surfaces

n
1

n
2

n
3

n
4

n
5

x
1

x
2

Input

Layer

Hidden

Layer

Output

Layer

y

w
31

w
32

w
41

w
42

w
53

w
54

XOR Data
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Why Multiple Hidden Layers?

• Activations at hidden layers can be viewed as features 

extracted as functions of inputs

• Every hidden layer represents a level of abstraction

– Complex features are compositions of simpler features

• Number of layers is known as depth of ANN

– Deeper networks express complex hierarchy of features

83

Multi-Layer Network Architecture

Activation value at 

node i at layer l

�
�

Activation 

Function Linear Predictor

84



Copyright 2000 N. AYDIN. All rights 

reserved. 15

Activation Functions

85

Learning Multi-layer Neural Network

• Can we apply perceptron learning rule to each 
node, including hidden nodes?

– Perceptron learning rule computes error term e = y -  𝑦
and updates weights accordingly

• Problem: how to determine the true value of y for hidden 
nodes?

– Approximate error in hidden nodes by error in the 
output nodes

• Problem: 
– Not clear how adjustment in the hidden nodes affect overall error 

– No guarantee of convergence to optimal solution

86

Gradient Descent

• Loss Function to measure errors across all training points

• Gradient descent: Update parameters in the direction of 

“maximum descent” in the loss function across all points

• Stochastic gradient descent (SGD): update the weight for every instance 

(minibatch SGD: update over min-batches of instances)

𝜆: learning rate

Squared Loss:

87

Computing Gradients

• Using chain rule of differentiation (on a single instance):

• For sigmoid activation function:

• How can we compute 𝛿𝑖
𝑙 for every layer? 

 𝑦 = 𝑎𝐿

𝑖𝑗𝑖𝑗
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Backpropagation Algorithm

• At output layer L:

• At a hidden layer 𝑙 (using chain rule):

– Gradients at layer l can be computed using gradients at layer l + 1

– Start from layer L and “backpropagate” gradients to all previous layers

• Use gradient descent to update weights at every epoch

• For next epoch, use updated weights to compute loss fn. and its gradient

• Iterate until convergence (loss does not change)

89

Design Issues in ANN

• Number of nodes in input layer 

– One input node per binary/continuous attribute

– k or log2 k nodes for each categorical attribute with k values

• Number of nodes in output layer

– One output for binary class problem

– k or log2 k nodes for k-class problem

• Number of hidden layers and nodes per layer

• Initial weights and biases

• Learning rate, max. number of epochs, mini-batch size for mini-

batch SGD, …

90
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Characteristics of ANN

• Multilayer ANN are universal approximators but could suffer 

from overfitting if the network is too large

– Naturally represents a hierarchy of features at multiple levels of 

abstractions

• Gradient descent may converge to local minimum

• Model building is compute intensive, but testing is fast 

• Can handle redundant and irrelevant attributes because weights 

are automatically learnt for all attributes

• Sensitive to noise in training data

– This issue can be addressed by incorporating model complexity in the loss 

function

• Difficult to handle missing attributes

91

Deep Learning Trends

• Training deep neural networks (more than 5-10 layers) could only be possible 

in recent times with:

– Faster computing resources (GPU)

– Larger labeled training sets

• Algorithmic Improvements in Deep Learning

– Responsive activation functions (e.g., RELU)

– Regularization (e.g., Dropout)

– Supervised pre-training

– Unsupervised pre-training (auto-encoders)

• Specialized ANN Architectures: 

– Convolutional Neural Networks (for image data)

– Recurrent Neural Networks (for sequence data)

– Residual Networks (with skip connections)

• Generative Models: Generative Adversarial Networks

92

93

Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data

94

Support Vector Machines

• One Possible Solution

B
1

95

Support Vector Machines

• Another possible solution

B
2

96
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Support Vector Machines

• Other possible solutions

B
2

97

Support Vector Machines

• Which one is better? B1 or B2?

• How do you define better?

B
1

B
2
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Support Vector Machines

• Find hyperplane maximizes the margin => B1 is better than B2

B
1

B
2

b
11

b
12

b
21

b
22

margin
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Support Vector Machines

B
1

b
11

b
12

0 bxw


1 bxw
 1 bxw












1bxw if1

1bxw if1
)( 



xf

||||

2
 Margin

w

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Linear SVM

• Linear model: 

• Learning the model is equivalent to determining 

the values of 

– How to find             from training data?










1bxw if1

1bxw if1
)( 



xf

  and bw


  and bw

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Learning Linear SVM

• Objective is to maximize:

– Which is equivalent to minimizing:

– Subject to the following constraints:

or

• This is a constrained optimization problem

– Solve it using Lagrange multiplier method

||||

2
 Margin

w











1bxw if 1

1bxw if1

i

i




iy

2

||||
)(

2w
wL






𝑦𝑖(w • x𝑖 + 𝑏) ≥ 1, 𝑖 = 1,2, . . . , 𝑁
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Example of Linear SVM

x1 x2 y 
0.3858 0.4687 1 65.5261

0.4871 0.611 -1 65.5261

0.9218 0.4103 -1 0

0.7382 0.8936 -1 0

0.1763 0.0579 1 0

0.4057 0.3529 1 0

0.9355 0.8132 -1 0

0.2146 0.0099 1 0

Support vectors
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Learning Linear SVM

• Decision boundary depends only on support 

vectors

– If you have data set with same support vectors, 

decision boundary will not change

– How to classify using SVM once w and b are found? 

Given a test record, xi










1bxw if1

1bxw if1
)(

i

i





ixf
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Support Vector Machines

• What if the problem is not linearly separable?

105

Support Vector Machines

• What if the problem is not linearly separable?

– Introduce slack variables

• Need to minimize:

• Subject to: 

• If k is 1 or 2, this leads to similar objective function as 
linear SVM but with different constraints (see textbook)




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Support Vector Machines

• Find the hyperplane that optimizes both factors

B
1

B
2

b
11

b
12

b
21

b
22

margin
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Nonlinear Support Vector Machines

• What if decision boundary is not linear?

108
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Nonlinear Support Vector Machines

• Transform data into higher dimensional space

0)(  bxw


Decision boundary:

109

Learning Nonlinear SVM

• Optimization problem:

• Which leads to the same set of equations (but 

involve (x) instead of x)

110

Learning NonLinear SVM

• Issues:

– What type of mapping function  should be used?

– How to do the computation in high dimensional 

space?

• Most computations involve dot product (xi) (xj) 

• Curse of dimensionality?

111

Learning Nonlinear SVM

• Kernel Trick:

– (xi) (xj) = K(xi, xj) 

– K(xi, xj) is a kernel function (expressed in terms of 

the coordinates in the original space)

• Examples:

112

Example of Nonlinear SVM

SVM with polynomial 

degree 2 kernel

113

Learning Nonlinear SVM

• Advantages of using kernel:

– Don’t have to know the mapping function 

– Computing dot product (xi) (xj) in the original 

space avoids curse of dimensionality

• Not all functions can be kernels

– Must make sure there is a corresponding  in some 

high-dimensional space

– Mercer’s theorem (see textbook)
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Characteristics of SVM

• The learning problem is formulated as a convex optimization problem

– Efficient algorithms are available to find the global minima 

– Many of the other methods use greedy approaches and find locally optimal solutions

– High computational complexity for building the model

• Robust to noise

• Overfitting is handled by maximizing the margin of the decision boundary, 

• SVM can handle irrelevant and redundant attributes better than many other techniques

• The user needs to provide the type of kernel function and cost function

• Difficult to handle missing values

• What about categorical variables?

115 116

Ensemble Methods

• Construct a set of base classifiers learned from 

the training data

• Predict class label of test records by combining 

the predictions made by multiple classifiers (e.g., 

by taking majority vote)

117

Example: Why Do Ensemble Methods Work?

118

Necessary Conditions for Ensemble Methods

• Ensemble Methods work better than a single base classifier if:

1. All base classifiers are independent of each other

2. All base classifiers perform better than random guessing (error 

rate < 0.5 for binary classification)

119

Classification error for an 

ensemble of 25 base classifiers, 

assuming their errors are 

uncorrelated. 

Rationale for Ensemble Learning

• Ensemble Methods work best with unstable

base classifiers

– Classifiers that are sensitive to minor perturbations in 

training set, due to high model complexity

– Examples: Unpruned decision trees, ANNs, …
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Bias-Variance Decomposition

• Analogous problem of reaching a target y by firing projectiles 

from x (regression problem)

• For classification, the generalization error of model 𝑚 can be 

given by:

𝑔𝑒𝑛. 𝑒𝑟𝑟𝑜𝑟 𝑚 = 𝑐1 + 𝑏𝑖𝑎𝑠 𝑚 + 𝑐2 × 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑚)
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Bias-Variance Trade-off and Overfitting 

• Ensemble methods try to reduce the variance of complex 

models (with low bias) by aggregating responses of multiple 

base classifiers

122

Underfitting

Overfitting

General Approach of Ensemble 

Learning
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Using majority vote or 

weighted majority vote 

(weighted according to their 

accuracy or relevance)

Constructing Ensemble Classifiers

• By manipulating training set
– Example: bagging, boosting, random forests

• By manipulating input features
– Example: random forests

• By manipulating class labels
– Example: error-correcting output coding

• By manipulating learning algorithm
– Example: injecting randomness in the initial weights of  ANN
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Bagging (Bootstrap AGGregatING)

• Bootstrap sampling: sampling with replacement

• Build classifier on each bootstrap sample

• Probability of a training instance being selected 

in a bootstrap sample is:

1 – (1 - 1/n)n (n: number of training instances)

~0.632 when n is large 

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7
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Bagging Algorithm

126
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Bagging Example

• Consider 1-dimensional data set:

• Classifier is a decision stump (decision tree of size 1)

– Decision rule:  x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False
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Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1
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Bagging Example

Bagging Round 1:

x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9

y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:

x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1

y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:

x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:

x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9

y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:

x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1

y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.7  y = 1

x > 0.7  y = 1

x <= 0.35  y = 1

x > 0.35  y = -1

x <= 0.3  y = 1

x > 0.3  y = -1

x <= 0.35  y = 1

x > 0.35  y = -1
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Bagging Example

Bagging Round 6:

x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1

y 1 -1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 7:

x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1

y 1 -1 -1 -1 -1 1 1 1 1 1

Bagging Round 8:

x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 9:

x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1

y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 10:

x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9

y 1 1 1 1 1 1 1 1 1 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.75  y = -1

x > 0.75  y = 1

x <= 0.05  y = 1

x > 0.05  y = 1
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Bagging Example

• Summary of Trained Decision Stumps:

Round Split Point Left Class Right Class

1 0.35 1 -1

2 0.7 1 1

3 0.35 1 -1

4 0.3 1 -1

5 0.35 1 -1

6 0.75 -1 1

7 0.75 -1 1

8 0.75 -1 1

9 0.75 -1 1

10 0.05 1 1
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Bagging Example

• Use majority vote (sign of sum of predictions) to determine 

class of ensemble classifier

• Bagging can also increase the complexity (representation 

capacity) of simple classifiers such as decision stumps

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 1 1 1 -1 -1 -1 -1 -1 -1 -1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

4 1 1 1 -1 -1 -1 -1 -1 -1 -1

5 1 1 1 -1 -1 -1 -1 -1 -1 -1

6 -1 -1 -1 -1 -1 -1 -1 1 1 1

7 -1 -1 -1 -1 -1 -1 -1 1 1 1

8 -1 -1 -1 -1 -1 -1 -1 1 1 1

9 -1 -1 -1 -1 -1 -1 -1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

Sum 2 2 2 -6 -6 -6 -6 2 2 2

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Boosting

• An iterative procedure to adaptively change 

distribution of training data by focusing more on 

previously misclassified records

– Initially, all N records are assigned equal weights (for 

being selected for training)

– Unlike bagging, weights may change at the end of 

each boosting round
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Boosting

• Records that are wrongly classified will have 

their weights increased in the next round

• Records that are classified correctly will have 

their weights decreased in the next round

Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more 

likely to be chosen again in subsequent rounds
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AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate of a base classifier:

• Importance of a classifier: 








 


i

i
i






1
ln

2

1
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AdaBoost Algorithm

• Weight update:

• If any intermediate rounds produce error rate 

higher than 50%, the weights are reverted back to 

1/n and the resampling procedure is repeated

• Classification:
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AdaBoost Algorithm
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AdaBoost Example

• Consider 1-dimensional data set:

• Classifier is a decision stump

– Decision rule:  x  k versus x > k

– Split point k is chosen based on entropy

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

x  k

yleft yright

True False
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AdaBoost Example

• Training sets for the first 3 boosting rounds:

• Summary:

Boosting Round 1:

x 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1

y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:

x 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3

y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:

x 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7

y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

Round Split Point Left Class Right Class alpha

1 0.75 -1 1 1.738

2 0.05 1 1 2.7784

3 0.3 1 -1 4.1195
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AdaBoost Example

• Weights

• Classification

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

2 0.311 0.311 0.311 0.01 0.01 0.01 0.01 0.01 0.01 0.01

3 0.029 0.029 0.029 0.228 0.228 0.228 0.228 0.009 0.009 0.009

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0

1 -1 -1 -1 -1 -1 -1 -1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 5.16 5.16 -3.08 -3.08 -3.08 -3.08 0.397 0.397 0.397

Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Random Forest Algorithm

• Construct an ensemble of decision trees by 

manipulating training set as well as features

– Use bootstrap sample to train every decision tree 

(similar to Bagging)

– Use the following tree induction algorithm:

• At every internal node of decision tree, randomly sample p 

attributes for selecting split criterion

• Repeat this procedure until all leaves are pure (unpruned 

tree)

141

Characteristics of Random Forest
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Gradient Boosting

• Constructs a series of models 

– Models can be any predictive model that has a 

differentiable loss function

– Commonly, trees are the chosen model

• XGboost (extreme gradient boosting) is a popular package 

because of its impressive performance

• Boosting can be viewed as optimizing the loss 

function by iterative functional gradient descent.

• Implementations of various boosted algorithms 

are available in Python, R, Matlab, and more.

143
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Class Imbalance Problem

• Lots of classification problems where the classes 

are skewed (more records from one class than 

another)
– Credit card fraud

– Intrusion detection

– Defective products in manufacturing assembly line

– COVID-19 test results on a random sample

• Key Challenge: 

– Evaluation measures such as accuracy are not well-suited for 

imbalanced class
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Confusion Matrix

• Confusion Matrix:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)
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Accuracy

• Most widely-used metric:

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a

(TP)

b

(FN)

Class=No c

(FP)

d

(TN)

FNFPTNTP

TNTP

dcba

da









Accuracy 
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Problem with Accuracy

• Consider a 2-class problem
– Number of Class NO examples = 990

– Number of Class YES examples = 10

• If a model predicts everything to be class NO, accuracy is 
990/1000 = 99 %

– This is misleading because this trivial model does not detect any class YES 
example

– Detecting the rare class is usually more interesting (e.g., frauds, intrusions, 
defects, etc)

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 0 10

Class=No 0 990
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Which model is better?

PREDICTED 

ACTUAL

Class=Yes Class=No

Class=Yes 0 10

Class=No 0 990

PREDICTED 

ACTUAL

Class=Yes Class=No

Class=Yes 10 0

Class=No 500 490

A

B

Accuracy: 99%

Accuracy: 50%
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Which model is better?

PREDICTED 

ACTUAL

Class=Yes Class=No

Class=Yes 5 5

Class=No 0 990

PREDICTED 

ACTUAL

Class=Yes Class=No

Class=Yes 10 0

Class=No 500 490

A

B
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Alternative Measures

cba

a

pr

rp

ba

a

ca

a













2

22
(F) measure-F

(r) Recall

 (p)Precision 

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d
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Alternative Measures

99.0
1000

990
Accuracy 

62.0
5.01

5.0*1*2
(F) measure-F

1
010

10
(r) Recall

5.0
1010

10
 (p)Precision 

















PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 10 0

Class=No 10 980
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Alternative Measures

99.0
1000

990
Accuracy 

62.0
5.01

5.0*1*2
(F) measure-F

1
010

10
(r) Recall

5.0
1010

10
 (p)Precision 

















PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 10 0

Class=No 10 980

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 1 9

Class=No 0 990

991.0
1000

991
Accuracy 

18.0
1.01

1*1.0*2
(F) measure-F

1.0
91

1
(r) Recall

1
01

1
 (p)Precision 

















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Which of these classifiers is better?

8.0Accuracy 

8.0(F) measure-F

8.0(r) Recall

8.0 (p)Precision 









PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 40 10

Class=No 10 40

PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 40 10

Class=No 1000 4000
8.0~Accuracy 

08.0~(F) measure-F

8.0(r) Recall

04.0~ (p)Precision 









A

B
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Measures of Classification 

Performance

PREDICTED CLASS

ACTUAL

CLASS

Yes No

Yes TP FN

No FP TN

 is the probability that we reject 

the null hypothesis when it is true. 
This is a Type I error or a false 

positive (FP).

 is the probability that we accept 
the null hypothesis when it is false. 

This is a Type II error or a false 

negative (FN). 
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Alternative Measures

Precision (p) = 0.8
TPR = Recall (r) = 0.8
FPR = 0.2
F−measure (F) = 0.8
Accuracy = 0.8

A PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 40 10

Class=No 10 40

B PREDICTED CLASS

ACTUAL

CLASS

Class=Yes Class=No

Class=Yes 40 10

Class=No 1000 4000

Precision (p) = 0.038

TPR = Recall (r) = 0.8

FPR = 0.2

F−measure (F) = 0.07

Accuracy = 0.8

TPR

FPR
= 4

TPR

FPR
= 4
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Which of these classifiers is better?

2.0  FPR

2.0(r) Recall  TPR

5.0 (p)Precision 






A PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 10 40

Class=No 10 40

B PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 25 25

Class=No 25 25

C PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 40 10

Class=No 40 10

5.0  FPR

5.0(r) Recall  TPR

5.0 (p)Precision 







8.0  FPR

8.0(r) Recall  TPR

5.0 (p)Precision 







0.28measureF 

0.5measureF 

0.61measureF 
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ROC (Receiver Operating 

Characteristic)

• A graphical approach for displaying trade-off 

between detection rate and false alarm rate

• Developed in 1950s for signal detection theory to 

analyze noisy signals 

• ROC curve plots TPR against FPR

– Performance of a model represented as a point in an ROC 

curve
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ROC Curve

(TPR,FPR):

• (0,0): declare everything

to be negative class

• (1,1): declare everything

to be positive class

• (1,0): ideal

• Diagonal line:

– Random guessing

– Below diagonal line:

• prediction is opposite 

of the true class
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ROC (Receiver Operating 

Characteristic)

• To draw ROC curve, classifier must produce 

continuous-valued output 
– Outputs are used to rank test records, from the most likely positive class 

record to the least likely positive class record

– By using different thresholds on this value, we can  create different 

variations of the classifier with TPR/FPR tradeoffs  

• Many classifiers produce only discrete outputs (i.e., predicted 

class)

– How to get continuous-valued outputs?

• Decision trees, rule-based classifiers, neural networks, Bayesian 

classifiers, k-nearest neighbors, SVM
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Example: Decision Trees

x1 < 13.29 x2 < 17.35

x2 < 12.63

x1 < 6.56

x2 < 8.64

x2 < 1.38

x1 < 2.15

x1 < 7.24

x1 < 12.11

x1 < 18.88

0.107

0.143 0.669

0.164

0.059

0.071

0.727

0.271

0.654 0

0.220

x1 < 13.29 x2 < 17.35

x2 < 12.63

x1 < 6.56

x2 < 8.64

x2 < 1.38

x1 < 2.15

x1 < 7.24

x1 < 12.11

x1 < 18.88

Decision Tree

Continuous-valued outputs
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ROC Curve Example

x1 < 13.29 x2 < 17.35

x2 < 12.63

x1 < 6.56

x2 < 8.64

x2 < 1.38

x1 < 2.15

x1 < 7.24

x1 < 12.11

x1 < 18.88

0.107

0.143 0.669

0.164

0.059

0.071

0.727

0.271

0.654 0

0.220
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ROC Curve Example

At threshold t:

TPR=0.5, FNR=0.5, FPR=0.12, TNR=0.88

- 1-dimensional data set containing 2 classes (positive and negative)

- Any points located at x > t is classified as positive
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How to Construct an ROC curve

Instance Score True Class

1 0.95 +

2 0.93 +

3 0.87 -

4 0.85 -

5 0.85 -

6 0.85 +

7 0.76 -

8 0.53 +

9 0.43 -

10 0.25 +

• Use a classifier that produces a 

continuous-valued score for 

each instance

• The more likely it is for the 

instance to be in the + class, the 

higher the score

• Sort the instances in decreasing 

order according to the score 

• Apply a threshold at each unique 

value of the score

• Count the number of TP, FP, 

TN, FN at each threshold

• TPR = TP/(TP+FN)

• FPR = FP/(FP + TN)
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How to construct an ROC curve

Class + - + - - - + - + +  

P 
0.25 0.43 0.53 0.76 0.85 0.85 0.85 0.87 0.93 0.95 1.00 

TP 5 4 4 3 3 3 3 2 2 1 0 

FP 5 5 4 4 3 2 1 1 0 0 0 

TN 0 0 1 1 2 3 4 4 5 5 5 

FN 0 1 1 2 2 2 2 3 3 4 5 

TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0 

FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0 

 

Threshold >= 

ROC Curve:
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Using ROC for Model Comparison

 No model consistently 

outperforms the other

 M1 is better for 

small FPR

 M2 is better for 

large FPR

 Area Under the ROC 

curve (AUC)

 Ideal: 

 Area = 1

 Random guess:

 Area = 0.5

166

Dealing with Imbalanced Classes - Summary

• Many measures exists, but none of them may be ideal in all 

situations
– Random classifiers can have high value for many of these measures

– TPR/FPR provides important information but may not be sufficient by itself in 

many practical scenarios

– Given two classifiers, sometimes you can tell that one of them is strictly 

better than the other
• C1 is strictly better than C2 if C1 has strictly better TPR and FPR relative to C2 (or same TPR and 

better FPR, and vice versa)

– Even if C1 is strictly better than C2, C1’s F-value can be worse than C2’s if they 

are evaluated on data sets with different imbalances

– Classifier C1 can be better or worse than C2 depending on the scenario at hand 

(class imbalance, importance of TP vs FP, cost/time tradeoffs)
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Which Classifer is better?

01.0  FPR

5.0(r) Recall  TPR

98.0 (p)Precision 







T1 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 50 50

Class=No 1 99

T2 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 99 1

Class=No 10 90

T3 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 99 1

Class=No 1 99

1.0  FPR

99.0(r) Recall  TPR

9.0 (p)Precision 







01.0  FPR

99.0(r) Recall  TPR

99.0 (p)Precision 







0.66measureF

50 TPR/FPR





0.94measureF

9.9  TPR/FPR





0.99measureF

99  TPR/FPR




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Which Classifer is better? Medium Skew case

01.0  FPR

5.0(r) Recall  TPR

83.0 (p)Precision 







T1 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 50 50

Class=No 10 990

T2 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 99 1

Class=No 100 900

T3 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 99 1

Class=No 10 990

1.0  FPR

99.0(r) Recall  TPR

5.0 (p)Precision 







01.0  FPR

99.0(r) Recall  TPR

9.0 (p)Precision 







0.62measureF

50 TPR/FPR





0.66measureF

9.9  TPR/FPR





0.94measureF

99  TPR/FPR




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Which Classifer is better? High Skew case

01.0  FPR

5.0(r) Recall  TPR

3.0 (p)Precision 







T1 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 50 50

Class=No 100 9900

T2 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 99 1

Class=No 1000 9000

T3 PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes 99 1

Class=No 100 9900

1.0  FPR

99.0(r) Recall  TPR

09.0 (p)Precision 







01.0  FPR

99.0(r) Recall  TPR

5.0 (p)Precision 







0.375measureF

50 TPR/FPR





0.165measureF

9.9  TPR/FPR





0.66measureF

99  TPR/FPR




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Building Classifiers with Imbalanced Training Set

• Modify the distribution of training data so that 

rare class is well-represented in training set

– Undersample the majority class

– Oversample the rare class
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