Data Mining

Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr
http://www3.yildiz.edu.tr/~naydin

Data Mining

Classification: Alternative Techniques

- Outline
- Types of Classifiers
- Rule-Based Classifier
- Nearest Neighbor Classifiers
- Naïve Bayes Classifier
- Bayesian Networks
- Logistic Regression
- Artificial Neural Network (ANN)
- Deep Learning
- Support Vector Machine (SVM)
- Ensemble Methods
- Class Imbalance Problem
- Multiclass Problem

Types of Classifiers

- One way to distinguish classifiers is by considering the characteristics of their output
- Binary versus Multiclass
- Binary classifiers assign each data instance to one of two possible labels, typically denoted as +1 and -1
- If there are more than two possible labels available, then the technique is known as a multiclass classifier
- Deterministic versus Probabilistic
- A deterministic classifier produces a discrete-valued label to each data instance it classifies
- A probabilistic classifier assigns a continuous score between 0 and 1 to indicate how likely it is that an instance belongs to a particular class

Types of Classifiers

- Linear versus Nonlinear
- A linear classifier uses a linear separating hyperplane to discriminate instances from different classes
- A nonlinear classifier enables the construction of more complex, nonlinear decision surfaces.
- Global versus Local
- A global classifier fits a single model to the entire data set.
- A local classifier partitions the input space into smaller regions and fits a distinct model to training instances in each region.
- Generative versus Discriminative
- Classifiers that learn a generative model of every class in the process of predicting class labels are known as generative classifiers
- Discriminative classifiers directly predict the class labels without explicitly describing the distribution of every class label

Rule-Based Classifier

Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (Condition) $\rightarrow y$
- where
- Condition is a conjunction of tests on attributes
- y is the class label

Examples of classification rules:

- (Blood Type=Warm) $\wedge($ Lay Eggs $=$ Yes $) \rightarrow$ Birds
- $($ Taxable Income $<50 \mathrm{~K}) \wedge($ Refund $=$ Yes $) \rightarrow$ Evade $=$ No

Rule-based Classifier (Example)

R1: $($ Give Birth $=$ no $) \wedge($ Can Fly $=$ yes $) \rightarrow$ Birds
R2: (Give Birth $=$ no) \wedge (Live in Water $=$ yes) \rightarrow Fishes R3: $($ Give Birth $=$ yes $) \wedge($ Blood Type $=$ warm $) \rightarrow$ Mammals
R4: $($ Give Birth $=$ no $) \wedge($ Can Fly $=$ no $) \rightarrow$ Reptiles R5: (Live in Water $=$ sometimes) \rightarrow Amphibians

Application of Rule-Based Classifier

- A rule r covers an instance \mathbf{x} if the attributes of the instance satisfy the condition of the rule

R1: $($ Give Birth $=$ no $) \wedge($ Can Fly $=$ yes $) \rightarrow$ Birds
R2: $($ Give Birth $=$ no $) \wedge$ (Live in Water $=$ yes $) \rightarrow$ Fishes
R3: (Give Birth = yes) $\wedge($ Blood Type $=$ warm $) \rightarrow$ Mammals
R4: (Give Birth $=$ no $) \wedge($ Can Fly $=$ no $) \rightarrow$ Reptiles
R5: (Live in Water $=$ sometimes $) \rightarrow$ Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	$?$
grizzly bear	warm	yes	no	no	$?$

The rule R1 covers a hawk => Bird
The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

- Coverage of a rule:
- Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
- Fraction of records that satisfy the antecedent that also satisfy the consequent of a rule

Tid	Refund	Marital Status	Taxable Income	
		Class		
1	Yes	Single	125 K	No
2	No	Married	100 K	No
3	No	Single	70 K	No
4	Yes	Married	120 K	No
5	No	Divorced	95 K	Yes
6	No	Married	60 K	No
7	Yes	Divorced	220 K	No
8	No	Single	85 K	Yes
9	No	Married	75 K	No
10	No	Single	90 K	Yes

(Status=Single) \rightarrow No
Coverage $=40 \%$, Accuracy $=50 \%$

How does Rule-based Classifier Work?

R1: $($ Give Birth $=$ no $) \wedge($ Can Fly $=$ yes $) \rightarrow$ Birds
R2: (Give Birth $=$ no) $\wedge($ Live in Water $=$ yes $) \rightarrow$ Fishes
R3: (Give Birth = yes) ^(Blood Type = warm) \rightarrow Mammals
R4: $($ Give Birth $=$ no $) \wedge($ Can Fly $=$ no $) \rightarrow$ Reptiles
R5: (Live in Water $=$ sometimes $) \rightarrow$ Amphibians

A lemur triggers rule R3, so it is classified as a mammal
A turtle triggers both R4 and R5
A dogfish shark triggers none of the rules

Characteristics of Rule Sets: Strategy 1

- Mutually exclusive rules
- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by at most one rule
- Exhaustive rules
- Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
- Each record is covered by at least one rule

Characteristics of Rule Sets: Strategy 2

- Rules are not mutually exclusive
- A record may trigger more than one rule
- Solution?
- Ordered rule set
- Unordered rule set - use voting schemes
- Rules are not exhaustive
- A record may not trigger any rules
- Solution?
- Use a default class

Ordered Rule Set

- Rules are rank ordered according to their priority

An ordered rule set is known as a decision list

- When a test record is presented to the classifier
- It is assigned to the class label of the highest ranked rule it has triggered - If none of the rules fired, it is assigned to the default class

R1: $($ Give Birth $=$ no $) \wedge($ Can Fly $=$ yes $) \rightarrow$ Birds
R2: $($ Give Birth $=$ no $) \wedge($ Live in Water $=$ yes $) \rightarrow$ Fishes
R3: $($ Give Birth $=$ yes $) \wedge($ Blood Type $=$ warm $) \rightarrow$ Mammals
R4: (Give Birth $=$ no $) \wedge($ Can Fly $=$ no $) \rightarrow$ Reptiles
R5: (Live in Water $=$ sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
turtle	cold	no	no	sometimes	$?$

Building Classification Rules

- Direct Method:
- Extract rules directly from data
- Examples: RIPPER, CN2, Holte's 1R
- Indirect Method:
- Extract rules from other classification models (e.g. decision trees, neural networks, etc).
- Examples: C4.5rules

Rule Ordering Schemes

- Rule-based ordering
- Individual rules are ranked based on their quality
- Class-based ordering
- Rules that belong to the same class appear together

Rule-based Ordering (Refund $=$ Yes) $=\Rightarrow$ No (Refund=No, Marital Status=\{Single,Divorced\}, Taxable Income $<80 \mathrm{~K}$) $=\gg$ No (Refund=No, Marital Status=\{Single,Divorced\}, Taxable Income $>80 \mathrm{~K}$) $==>$ Yes (Refund $=$ No, Marital Status $=\{$ Married $\}$) $=\Rightarrow$ No

Class-based Ordering
(Refund=Yes) ==> No
(Refund=No, Marital Status=\{Single,Divorced) Taxable Income $<80 \mathrm{~K}$) $=\gg$ No
(Refund=No, Marital Status=\{Married\}) $==>$ No
(Refund=No, Marital Status=\{Single, Divorced\} (Refund=No, Marital Status=\{Sin
Taxable Income $>80 \mathrm{~K}$) $=\gg$ Yes

Direct Method: Sequential Covering

1. Start from an empty rule
2. Grow a rule using the Learn-One-Rule function
3. Remove training records covered by the rule
4. Repeat Step (2) and (3) until stopping criterion is met

Example of Sequential Covering...

(iii) Step 2

(iv) Step 3

Rule Evaluation

- Foil's Information Gain

FOIL: First Order Inductive Learner an early rule-based
R0: $\}=>$ class (initial rule)

- R1: $\{\mathrm{A}\}=>$ class (rule after adding conjunct)
$\operatorname{Gain}\left(R_{0}, R_{1}\right)=p_{1} \times\left[\log _{2}\left(\frac{p_{1}}{p_{1}+n_{1}}\right)-\log _{2}\left(\frac{p_{0}}{p_{0}+n_{0}}\right)\right]$
- p_{0} : number of positive instances covered by R0
n_{0} : number of negative instances covered by R0
p_{1} : number of positive instances covered by R1
n_{1} : number of negative instances covered by R1

Direct Method: RIPPER

- For 2-class problem, choose one of the classes as positive class, and the other as negative class

Direct Method: RIPPER

- Growing a rule:
- Start from empty rule
- Learn rules for positive class
- Negative class will be default class
- For multi-class problem
- Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
- Learn the rule set for smallest class first, treat the rest as negative class
- Repeat with next smallest class as positive class
- Add conjuncts as long as they improve FOIL's information gain
- Stop when rule no longer covers negative examples
- Prune the rule immediately using incremental reduced error pruning
- Measure for pruning: $\mathrm{v}=(\mathrm{p}-\mathrm{n}) /(\mathrm{p}+\mathrm{n})$
- p: number of positive examples covered by the rule in the validation set
- n : number of negative examples covered by the rule in the validation set
Pruning method: delete any final sequence of conditions that maximizes v

Direct Method: RIPPER

- Building a Rule Set:
- Use sequential covering algorithm
- Finds the best rule that covers the current set of positive examples
- Eliminate both positive and negative examples covered by the rule
- Each time a rule is added to the rule set, compute the new description length
- Stop adding new rules when the new description length is d bits longer than the smallest description length obtained so far

Direct Method: RIPPER

- Optimize the rule set:
- For each rule r in the rule set \boldsymbol{R}
- Consider 2 alternative rules:
- Replacement rule (r^{*}): grow new rule from scratch
- Revised rule(r'): add conjuncts to extend the rule r
- Compare the rule set for r against the rule set for r^{*} and r^{\prime}
- Choose rule set that minimizes MDL principle
- Repeat rule generation and rule optimization for the remaining positive examples

Indirect Method: C4.5rules

- Extract rules from an unpruned decision tree
- For each rule, r: A $\rightarrow \mathrm{y}$,
- consider an alternative rule $\mathrm{r}^{\prime}: \mathrm{A}^{\prime} \rightarrow \mathrm{y}$ where A^{\prime} is obtained by removing one of the conjuncts in A
- Compare the pessimistic error rate for ragainst all r's
- Prune if one of the alternative rules has lower pessimistic error rate
- Repeat until we can no longer improve generalization error

Indirect Method: C4.5rules

- Instead of ordering the rules, order subsets of rules (class ordering)
- Each subset is a collection of rules with the same rule consequent (class)
- Compute description length of each subset
- Description length $=\mathrm{L}($ error $)+\mathrm{g} \mathrm{L}($ model $)$
- g is a parameter that takes into account the presence of redundant attributes in a rule set (default value $=0.5$)

C4.5 versus C4.5rules versus RIPPER

Example

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

C4.5 versus C4.5rules versus RIPPER

C4.5 and C4.5rules:

RIPPER:

Advantages of Rule-Based Classifiers

- Has characteristics quite similar to decision trees
- As highly expressive as decision trees
- Easy to interpret (if rules are ordered by class)
- Performance comparable to decision trees
- Can handle redundant and irrelevant attributes
- Variable interaction can cause issues (e.g., X-OR problem)
- Better suited for handling imbalanced classes
- Harder to handle missing values in the test set

Nearest Neighbor Classifiers

- Basic idea:
- If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

How to Determine the class label of a Test Sample?

- Take the majority vote of class labels among the k-nearest neighbors
- Weight the vote according to distance
- weight factor, $w=1 / d^{2}$

Copyright 2000 N. AYDIN. All rights reserved.

Nearest Neighbor Classification...

- Data preprocessing is often required
- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
height of a person may vary from 1.5 m to 1.8 m
- weight of a person may vary from 901b to 300 lb
- income of a person may vary from $\$ 10 \mathrm{~K}$ to $\$ 1 \mathrm{M}$
- Time series are often standardized to have 0 means a standard deviation of 1

Nearest Neighbor Classification...

- How to handle missing values in training and test sets?
- Proximity computations normally require the presence of all attributes
- Some approaches use the subset of attributes present in two instances
- This may not produce good results since it effectively uses different proximity measures for each pair of instances
- Thus, proximities are not comparable

K-NN Classificiers...
Handling Irrelevant and Redundant Attributes
Irrelevant attributes add noise to the proximity measure
Redundant attributes bias the proximity measure towards certain attributes

(a) Synthetic data set 1 .

K-NN Classifiers: Handling attributes that are interacting

Handling attributes that are interacting

Attribute X

Improving KNN Efficiency

- Avoid having to compute distance to all objects in the training set
- Multi-dimensional access methods (k-d trees)
- Fast approximate similarity search
- Locality Sensitive Hashing (LSH)
- Condensing
- Determine a smaller set of objects that give the same performance
- Editing
- Remove objects to improve efficiency

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability: $\quad P(Y \mid X)=\frac{P(X, Y)}{P(X)}$

$$
P(X \mid Y)=\frac{P(X, Y)}{P(Y)}
$$

- Bayes theorem:

$$
P(Y \mid X)=\frac{P(X \mid Y) P(Y)}{P(X)}
$$

Using Bayes Theorem for Classification

- Approach:
- compute posterior probability $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)$ using the Bayes theorem

$$
P\left(Y \mid X_{1} X_{2} \ldots X_{n}\right)=\frac{P\left(X_{1} X_{2} \ldots X_{d} \mid Y\right) P(Y)}{P\left(X_{1} X_{2} \ldots X_{d}\right)}
$$

- Maximum a-posteriori: Choose Y that maximizes $\mathrm{P}\left(\mathrm{Y} \mid \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}}\right)$
- Equivalent to choosing value of Y that maximizes $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}} \mid \mathrm{Y}\right) \mathrm{P}(\mathrm{Y})$
- How to estimate $\mathrm{P}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{d}} \mid \mathrm{Y}\right)$?

Example Data

Given a Test Record:
$X=($ Refund $=$ No, Divorced,Income $=120 \mathrm{~K})$

Conditional Independence

- \mathbf{X} and \mathbf{Y} are conditionally independent given \mathbf{Z} if $\mathrm{P}(\mathbf{X} \mid \mathbf{Y Z})=\mathrm{P}(\mathbf{X} \mid \mathbf{Z})$
- Example: Arm length and reading skills
- Young child has shorter arm length and limited reading skills, compared to adults
- If age is fixed, no apparent relationship between arm length and reading skills
- Arm length and reading skills are conditionally independent given age

Naïve Bayes Classifier

- Assume independence among attributes X_{i} when class is given: $-P\left(X_{1}, X_{2}, \ldots, X_{d} \mid Y_{j}\right)=P\left(X_{1} \mid Y_{j}\right) P\left(X_{2} \mid Y_{j}\right) \ldots P\left(X_{d} \mid Y_{j}\right)$
- Now we can estimate $P\left(X_{i} \mid Y_{j}\right)$ for all X_{i} and Y_{j} combinations from the training data
- New point is classified to Y_{j} if $\mathrm{P}\left(\mathrm{Y}_{\mathrm{j}}\right) \Pi \mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}_{\mathrm{j}}\right)$ is maximal.

Naïve Bayes on Example Data

Given a Test Record:
$X=($ Refund $=$ No, Divorced, Income $=120 \mathrm{~K})$

$P(X \mid Y e s)=$
P (Refund = No | Yes) x
$P($ Divorced \mid Yes $) x$
$P($ Income $=120 \mathrm{~K} \mid$ Yes $)$
$P(X \mid N o)=$
$P($ Refund $=$ No \mid No $) x$
P (Divorced | No) x
$P($ Income $=120 \mathrm{~K} \mid$ No $)$

Estimate Probabilities from Data

- $\mathrm{P}(\mathrm{y})=$ fraction of instances of class y

| Tid | | Refund | Marital
 Status | Taxable
 Income | | Evade |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |$|$| 1 | Yes | Single | 125 K | No |
| :--- | :--- | :--- | :--- | :--- |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

- e.g., $\mathrm{P}(\mathrm{No})=7 / 10$,
$\mathrm{P}(\mathrm{Yes})=3 / 10$
- For categorical attributes:
$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{c} \mid \mathrm{y}\right)=\mathrm{n}_{\mathrm{c}} / \mathrm{n}$
- where $\left|X_{i}=c\right|$ is number of instances having attribute value $\mathrm{X}_{\mathrm{i}}=\mathrm{c}$ and belonging to class y
- Examples:
$\mathrm{P}($ Status $=$ Married \mid No $)=4 / 7$ $\mathrm{P}($ Refund $=\mathrm{Yes} \mid$ Yes $)=0$

Estimate Probabilities from Data

- For continuous attributes:
- Discretization: Partition the range into bins:
- Replace continuous value with bin value
- Attribute changed from continuous to ordinal
- Probability density estimation:
- Assume attribute follows a normal distribution
- Use data to estimate parameters of distribution (e.g., mean and standard deviation)
- Once probability distribution is known, use it to estimate the conditional probability $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}\right)$

Estimate Probabilities from Data

| Tid | Refund | Marital
 Status | Taxable
 Income | Evade |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Yes | Single | 125 K | No |
| 2 | No | Married | 100 K | No |
| 3 | No | Single | 70 K | No |
| 4 | Yes | Married | 120 K | No |
| 5 | No | Divorced | 95 K | Yes |
| 6 | No | Married | 60 K | No |
| 7 | Yes | Divorced | 220 K | No |
| 8 | No | Single | 85 K | Yes |
| 9 | No | Married | 75 K | No |
| 10 | No | Single | 90 K | Yes |

- Normal distribution:
$P\left(X_{i} \mid Y_{j}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i j}^{2}}} e^{-\frac{\left(X_{i}-\mu_{j}\right)^{2}}{2 \sigma_{i j}^{2}}}$
- One for each $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$ pair
- For (Income, Class=No):
- If Class=No
- sample mean $=110$
- sample variance $=2975$
$P($ Income $=120 \mid N o)=\frac{1}{\sqrt{2 \pi}(54.54)} e^{\frac{(120-10)^{2}}{2(2973)}}=0.0072$

Example of Naïve Bayes Classifier

Given a Test Record:
$X=($ Refund $=$ No, Divorced,Income $=120 \mathrm{~K})$
Naïve Bayes Classifier:
$\mathrm{P}($ Refund $=\mathrm{Yes} \mid \mathrm{No})=3 / 7$
$\mathrm{P}($ Refund $=\mathrm{No} \mid \mathrm{No})=4 / 7$
$P($ Refund $=$ Yes \mid Yes $)=0$
P (Refund $=\mathrm{No} \mid$ Yes $)=1$
$P($ Marital Status $=$ Single \mid No $)=2 / 7$
P(Marital Status $=$ Divorced \mid No $)=1 / 7$
$P($ Marital Status $=$ Married $\mid N o)=47$
$P($ Marital Status $=$ Single \mid Yes $)=2 / 3$ $P($ Marital Status $=$ Divorced \mid Yes $)=1 / 3$ P (Marital Status $=$ Married \mid Yes $)=0$
For Taxable Income:
If class $=$ No: sample mean $=110$
sample variance $=2975$
sample variance $=25$

- $P(X \mid N o)=P($ Refund $=$ No \mid No $)$
$\times P$ (Divorced | No)
$\times \mathrm{P}($ Income $=120 \mathrm{~K} \mid$ No $)$
$=4 / 7 \times 1 / 7 \times 0.0072=0.0006$
- $P(X \mid$ Yes $)=P($ Refund $=$ No \mid Yes $)$
$\times P$ (Divorced \mid Yes)
$\times \mathrm{P}$ (Income $=120 \mathrm{~K} \mid$ Yes $)$
$=1 \times 1 / 3 \times 1.2 \times 10^{-9}=4 \times 10^{-10}$
Since $P(X \mid N o) P($ No $)>P(X \mid Y e s) P($ Yes $)$
Therefore $\mathrm{P}(\mathrm{No} \mid \mathrm{X})>\mathrm{P}(\mathrm{Yes} \mid \mathrm{X})$
\Rightarrow Class $=$ No

Naïve Bayes Classifier can make decisions with partial information about attributes in the test record

Even in absence of information
about any attributes, we can use
Apriori Probabilities of Class
Variable:
Naïve Bayes Classifier:
$P($ Refund $=Y$ Yes $\mid N o)=3 / 7$
$P($ Refund $=Y$ Yes $\mid \mathrm{No})=3 / 7$
$P($ Refund $=\mathrm{No} \mid \mathrm{No})=4 / 7$
$P($ Refund $=$ Yes \mid Yes $)=0$
P (Refund $=\mathrm{No} \mid$ Yes $)=1$
$P($ Marital Status $=$ Single $\mid N o)=2 / 7$
$P($ Marital Status $=$ Divorced \mid No $)=1 / 7$
$P($ Marital Status $=$ Married \mid No $)=4 / 7$
$P($ Marital Status $=$ Married $\mid N o)=4 / 7$
$P($ Marital Status $=$ Single \mid Yes $)=2 / 3$
$P($ Marital Status $=$ Divorced \mid Yes $)=1 / 3$
$P($ Marital Status $=$ Married \mid Yes $)=0$
For Taxable Income:
For Tlass $=$ No: sample mean $=110$
sample variance $=2975$
If class $=$ Yes: sample mean $=90$

$\mathrm{P}(\mathrm{Yes})=3 / 10$

$\mathrm{P}(\mathrm{No})=7 / 10$
If we only know that marital status is Divorced, then: $P($ Yes \mid Divorced $)=1 / 3 \times 3 / 10 / P($ Divorced $)$ $P($ No \mid Divorced $)=1 / 7 \times 7 / 10 / P($ Divorced $)$

If we also know that Refund $=\mathbf{N o}$, then $P($ Yes \mid Refund $=$ No, Divorced $)=1 \times 1 / 3 \times 3 / 10 /$ P (Divorced, Refund $=$ No) $P($ No \mid Refund $=$ No, Divorced $)=4 / 7 \times 1 / 7 \times 7 / 10 /$

If we also know that T P(Yes | Refid No, Divo (ned, ($)=$ No, Divorced, Income $=120)=$
$1.2 \times 10^{-9} \times 1 \times 1 / 3 \times 3 / 10$ P (Divorced, Refund $=$ No, Income $=120$) $P($ No | Refund $=$ No, Divorced Income $=120)=$ $0.0072 \times 4 / 7 \times 1 / 7 \times 7 / 10 /$ $P($ Divorced, Refund $=$ No, Income $=120)$

Issues with Naïve Bayes Classifier

Given a Test Record:
X = (Married)

```
Naïve Bayes Classifier
P(Refund = Yes | No)=3/7
P(Refund =No | No)=4/7
M(Refund = Yes | Yes)=0
P(Marital Status =Single | No) =2/7
l
P(Marital Status =Married |No)=4/7
P(Marital Status = Single Yes) = 2/3
P(Marital Status = Married |Yes)=0
For Taxable Income:
If class = No: sample mean =110
If class = Yes: sample mean =90
    sample variance = 25
P(Yes) = 3/10
P(No)= 7/10
\(P(\) Yes \(\mid\) Married \()=0 \times 3 / 10 / P(\) Married \()\) \(\mathrm{P}(\) No \(\mid\) Married \()=4 / 7 \times 7 / 10 / P(\) Married \()\)
```


Issues with Naïve Bayes Classifier

Naïve Bayes Classifier: $P($ Refund $=Y e s \mid N o)=2 / 6$ $P($ Refund $=\mathrm{No} \mid \mathrm{No})=4 / 6$ $\rightarrow P($ Refund $=$ Yes \mid Yes $)=0$ $P($ Marital Status $=$ Single \mid No $)=2 / 6$ P(Marital Status $=$ Divorced \mid No $)=0$ $P($ Marital Status $=$ Married $\mid N o)=4 / 6$ P (Marital Status $=$ Single \mid Yes $)=2 / 3$ $P($ Marital Status $=$ Divorced \mid Yes $)=1 / 3$ $P($ Marital Status $=$ Married \mid Yes $)=0 / 3$ For Taxable Income
If class $=\begin{gathered}\text { No: } \\ \text { sample mean }=91 \\ \text { sample variance }=685\end{gathered}$
If class $=$ No: sample mean $=90$ sample variance $=25$

Given $\mathrm{X}=$ (Refund $=$ Yes, Divorced, 120K)
$P(X \mid N o)=2 / 6 \times 0 \times 0.0083=0$
Naïve Bayes will not be able to $P(X \mid$ Yes $)=0 \times 1 / 3 \times 1.2 \times 10^{-9}=0$ classify X as Yes or No!

Issues with Naïve Bayes Classifier

- If one of the conditional probabilities is zero, then the entire expression becomes zero
- Need to use other estimates of conditional probabilities than simple fractions
n : number of training
- Probability estimation:
original: $P\left(X_{i}=c \mid y\right)=\frac{n_{c}}{n}$ instances belonging to class y
n_{c} : number of instances with $X_{i}=c$ and $Y=y$
v : total number of attribute values that X_{i} can take p : initial estimate of ($\mathrm{P}\left(X_{i}=c \mid y\right.$) known apriori m : hyper-parameter for our confidence in p

Example of Naïve Bayes Classifier

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Redundant and correlated attributes will violate class conditional assumption
- Use other techniques such as Bayesian Belief Networks (BBN)

Naïve Bayes

- How does Naïve Bayes perform on the following dataset?

Bayesian Belief Networks

- Provides graphical representation of probabilistic relationships among a set of random variables
- Consists of:
- A directed acyclic graph (dag)
- Node corresponds to a variable
- Arc corresponds to dependence relationship between a pair of variables

- A probability table associating each node to its immediate parent

Conditional Independence

D is parent of C
A is child of C
B is descendant of D
D is ancestor of A

- A node in a Bayesian network is conditionally independent of all of its nondescendants, if its parents are known

Conditional Independence

- Naïve Bayes assumption:

Probability Tables

- If X does not have any parents, table contains prior probability $\mathrm{P}(\mathrm{X})$
- If X has only one parent (Y), table contains $\frac{\square}{\mathbf{X}}$ conditional probability $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$
- If X has multiple parents $\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{k}}\right)$, table contains conditional probability $\mathrm{P}\left(\mathrm{X} \mid \mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots\right.$, Y_{k})

Example of Bayesian Belief Network

Example of Inferencing using BBN

- Given: $\mathrm{X}=(\mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes}, \mathrm{CP}=\mathrm{Yes}, \mathrm{BP}=\mathrm{High})$
- Compute P(HD|E,D,CP,BP)?
- $\mathrm{P}(\mathrm{HD}=\mathrm{Yes} \mid \mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes})=0.55$
$\mathrm{P}(\mathrm{CP}=\mathrm{Yes} \mid \mathrm{HD}=\mathrm{Yes})=0.8$
$\mathrm{P}(\mathrm{BP}=\mathrm{High} \mid \mathrm{HD}=\mathrm{Yes})=0.85$
- P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) $\propto 0.55 \times 0.8 \times 0.85=0.374$

Classify X

- $\mathrm{P}(\mathrm{HD}=\mathrm{No} \mid \mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes})=0.45$ as Yes
$\mathrm{P}(\mathrm{CP}=\mathrm{Yes} \mid \mathrm{HD}=\mathrm{No})=0.01$
$\mathrm{P}(\mathrm{BP}=\mathrm{High} \mid \mathrm{HD}=\mathrm{No})=0.2$
- $\mathrm{P}(\mathrm{HD}=\mathrm{No} \mid \mathrm{E}=\mathrm{No}, \mathrm{D}=\mathrm{Yes}, \mathrm{CP}=\mathrm{Yes}, \mathrm{BP}=$ High $)$
$\propto 0.45 \times 0.01 \times 0.2=0.0009$
\square

Artificial Neural Networks (ANN)

- Basic Idea: A complex non-linear function can be learned as a composition of simple processing units
- ANN is a collection of simple processing units (nodes) that are connected by directed links (edges)
- Every node receives signals from incoming edges, performs
computations, and transmits signals to outgoing edges
Analogous to human brain where nodes are neurons and signals are electrical impulses
Weight of an edge determines the strength of connection between the nodes
- Simplest ANN: Perceptron (single neuron)

Perceptron Example

Perceptron Learning Rule

- Initialize the weights $\left(w_{0}, w_{1}, \ldots, w_{d}\right)$
- Repeat
- For each training example $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$
- Compute $\widehat{y_{i}}$
- Update the weights:

$$
w_{j}^{(k+1)}=w_{j}^{(k)}+\lambda\left(y_{i}-\hat{y}_{i}^{(k)}\right) x_{i j}
$$

- Until stopping condition is met
- k : iteration number; λ : learning rate

Perceptron Learning Rule

- Weight update formula:

$$
w_{j}^{(k+1)}=w_{j}^{(k)}+\lambda\left(y_{i}-\hat{y}_{i}^{(k)}\right) x_{i j}
$$

- Intuition:
- Update weight based on error: $\mathrm{e}=$

$$
\left(y_{i}-\hat{y}_{i}\right)
$$

- If $y=\hat{y}, e=0$: no update needed
- If $y>\hat{y}, e=2$: weight must be increased (assuming $x_{i j}$ is positive) so that \hat{y} will increase
- If $\mathrm{y}<\hat{y}, \mathrm{e}=-2$: weight must be decreased (assuming x_{ij} is positive) so that \hat{y} will decrease

Example of Perceptron Learning

$\lambda=0.1$				
	w_{0}	w_{1}	w_{2}	w_{3}
0	0	0	0	0
1	-0.2	-0.2	0	0
2	0	0	0	0.2
3	0	0	0	0.2
4	0	0	0	0.2
5	-0.2	0	0	0
6	-0.2	0	0	0
7	0	0	0.2	0.2
8	-0.2	0	0.2	0.2

Weight updates over first epoch

all epochs

Nonlinearly Separable Data

For nonlinearly separable problems, perceptron learning algorithm will fail because no linear hyperplane can separate the data perfectly
$y=x_{1} \oplus x_{2}$

x_{1}	x_{2}	y
0	0	-1
1	0	1
0	1	1
1	1	-1

Multi-layer Neural Network

- Multi-layer neural networks with at least one hidden layer can solve any type of classification task involving nonlinear decision surfaces

XOR Data

Why Multiple Hidden Layers?

- Activations at hidden layers can be viewed as features extracted as functions of inputs
- Every hidden layer represents a level of abstraction - Complex features are compositions of simpler features

- Number of layers is known as depth of ANN
- Deeper networks express complex hierarchy of features

Multi-Layer Network Architecture

Activation Functions

$$
a_{i}^{l}=f\left(z_{i}^{l}\right)=f\left(\sum_{j} w_{i j}^{l} a_{j}^{l-1}+b_{i}^{l}\right)
$$

Learning Multi-layer Neural Network

- Can we apply perceptron learning rule to each node, including hidden nodes?
- Perceptron learning rule computes error term $e=y-\hat{y}$ and updates weights accordingly
- Problem: how to determine the true value of y for hidden nodes?
- Approximate error in hidden nodes by error in the output nodes
- Problem:
- Not clear how adjustment in the hidden nodes affect overall error
- No guarantee of convergence to optimal solution

Gradient Descent

- Loss Function to measure errors across all training points

$$
E(\mathbf{w}, \mathbf{b})=\sum_{k=1}^{n} \operatorname{Loss}\left(y_{k}, \hat{y}_{k}\right) \quad \text { Squared Loss: } \quad \text { Loss }\left(y_{k}, \hat{y}_{k}\right)=\left(y_{k}-\hat{y}_{k}\right)^{2} .
$$

- Gradient descent: Update parameters in the direction of "maximum descent" in the loss function across all points

$$
\begin{aligned}
& w_{i j}^{l} \longleftarrow w_{i j}^{l}-\lambda \frac{\partial E}{\partial w_{i j}^{l}}, \quad \lambda \text { : learning rate } \\
& b_{i}^{l} \longleftarrow b_{i}^{l}-\lambda \frac{\partial E}{\partial b_{i}^{l}}, \\
& \text { grauent uesernt (ouv). upuate the weight for every insta }
\end{aligned}
$$

- Stochastic graucin uescen (ouv). upuate the weight for every instance (minibatch SGD: update over min-batches of instances)

Computing Gradients

$$
\frac{\partial E}{\partial u_{i j}^{l}}=\sum_{k=1}^{n} \frac{\partial \operatorname{Loss}\left(y_{k}, \hat{y_{k}}\right)}{\partial u_{i j}^{l}} .
$$

$$
\begin{gathered}
\hat{y}=a^{L} \\
a_{i}^{l}=f\left(z_{i}^{l}\right)=f\left(\sum_{j} w_{i j}^{l} a_{j}^{l-1}+b_{i}^{l}\right)
\end{gathered}
$$

- Using chain rule of differentiation (on a single instance):

$$
\frac{\partial \text { Loss }}{\partial w_{i j}^{l}}=\frac{\partial \text { Loss }}{\partial a_{i}^{l}} \times \frac{\partial a_{i}^{l}}{\partial z_{i}^{l}} \times \frac{\partial z_{i}^{l}}{\partial w_{i j}^{l}} .
$$

- For sigmoid activation function:

$$
\begin{aligned}
\frac{\partial \text { Loss }}{\partial w_{i j}^{l}} & =\delta_{i}^{l} \times a_{i}^{l}\left(1-a_{i}^{l}\right) \times a_{j}^{l-1}, \\
\text { where } \delta_{i}^{l} & =\frac{\partial \text { Loss }}{\partial a_{i}^{l}} .
\end{aligned}
$$

- How can we compute δ_{i}^{c} for every layer?

Backpropagation Algorithm

- At output layer L:

$$
\delta^{L}=\frac{\partial \text { Loss }}{\partial a^{L}}=\frac{\partial\left(y-a^{L}\right)^{2}}{\partial a^{L}}=2\left(a^{L}-y\right) .
$$

- At a hidden layer l (using chain rule):

$$
\delta_{j}^{l}=\sum_{i}\left(\delta_{i}^{l+1} \times a_{i}^{l+1}\left(1-a_{i}^{l+1}\right) \times w_{i j}^{l+1}\right)
$$

Gradients at layer I can be computed using gradients at layer T+1

- Start from layer L and "backpropagate" gradients to all previous layers
- Use gradient descent to update weights at every epoch
- For next epoch, use updated weights to compute loss fn. and its gradient
- Iterate until convergence (loss does not change)

Design Issues in ANN

- Number of nodes in input layer
- One input node per binary/continuous attribute
- k or $\log _{2} \mathrm{k}$ nodes for each categorical attribute with k values
- Number of nodes in output layer
- One output for binary class problem
k or $\log _{2} \mathrm{k}$ nodes for k -class problem
- Number of hidden layers and nodes per layer
- Initial weights and biases
- Learning rate, max. number of epochs, mini-batch size for minibatch SGD,

Characteristics of ANN

- Multilayer ANN are universal approximators but could suffer from overfitting if the network is too large

Naturally represents a hierarchy of features at multiple levels of abstractions

- Gradient descent may converge to local minimum
- Model building is compute intensive, but testing is fast
- Can handle redundant and irrelevant attributes because weights are automatically learnt for all attributes
- Sensitive to noise in training data

This issue can be addressed by incorporating model complexity in the loss function

- Difficult to handle missing attributes

Deep Learning Trends

- Training deep neural networks (more than 5-10 layers) could only be possible in recent times with:
- Faster computing resources (GPU)
- Larger labeled training sets
- Algorithmic Improvements in Deep Learning

Responsive activation functions (e.g., RELU)
Regularization (e.g., Dropout)

- Supervised pre-training

Unsupervised pre-training (auto-encoders)

- Specialized ANN Architectures:

Convolutional Neural Networks (for image data)
Recurrent Neural Networks (for sequence data)
Residual Networks (with skip connections)

- Generative Models: Generative Adversarial Networks

Support Vector Machines

Support Vector Machines

One Possible Solution

Support Vector Machines

[^0]

Other possible solutions

Support Vector Machines

Which one is better? B1 or B2?
How do you define better?

Find hyperplane maximizes the margin $=>B 1$ is better than B2

Support Vector Machines

Linear SVM

- Linear model:

$$
f(\vec{x})=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}+\mathrm{b} \leq-1
\end{array}\right.
$$

- Learning the model ind is equivalent to determining the values of
- How to find \vec{w} and b
from training data?

Learning Linear SVM

- Objective is to maximize: $\operatorname{Margin}=\frac{2}{\|\vec{w}\|}$

Which is equivalent to minimizing: $\quad L(\vec{w})=\frac{\|\vec{w}\|^{2}}{2}$

- Subject to the following constraints:

$$
y_{i}=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1
\end{array}\right.
$$

or $\quad y_{i}\left(\mathrm{w} \cdot \mathrm{x}_{i}+b\right) \geq 1, \quad i=1,2, \ldots, N$

- This is a constrained optimization problem
- Solve it using Lagrange multiplier method

Learning Linear SVM

- Decision boundary depends only on support vectors
- If you have data set with same support vectors, decision boundary will not change
- How to classify using SVM once \mathbf{w} and b are found? Given a test record, x_{i}

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1
\end{array}\right.
$$

Support Vector Machines

- What if the problem is not linearly separable?

Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables
- Need to minimize: $L(w)=\frac{\|\vec{w}\|^{2}}{2}+C\left(\sum_{i=1}^{N} \xi_{i}^{k}\right)$
- Subject to:

$$
y_{i}=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b}=1-\xi_{\mathrm{i}} \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1+\xi_{\mathrm{i}}
\end{array}\right.
$$

- If k is 1 or 2 , this leads to similar objective function as linear SVM but with different constraints (see textbook)

Nonlinear Support Vector Machines

- Transform data into higher dimensional space

$$
\begin{aligned}
& x_{1}^{2}-x_{1}+x_{2}^{2}-x_{2}=-0.46 . \\
& \Phi:\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right) . \\
& w_{4} x_{1}^{2}+w_{3} x_{2}^{2}+w_{2} \sqrt{2} x_{1}+w_{1} \sqrt{2} x_{2}+w_{0}=0 . \\
& \text { Decision boundary: } \\
& \quad \vec{w} \bullet \Phi(\vec{x})+\boldsymbol{b}=0
\end{aligned}
$$

Learning Nonlinear SVM

- Optimization problem:

	$\min _{w} \frac{\\|\mathrm{w}\\|^{2}}{2}$
subject to	$y_{i}\left(\boldsymbol{w} \cdot \Phi\left(x_{i}\right)+b\right) \geq 1, \forall\left\{\left(x_{i}, y_{i}\right)\right\}$

- Which leads to the same set of equations (but involve $\Phi(x)$ instead of x)

$$
\begin{aligned}
& L_{D}=\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i, j} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right) \quad \begin{array}{l}
\mathbf{w}=\sum_{i} \lambda_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right) \\
\\
\left.\lambda_{i}\left\{y_{i} \sum_{j} \lambda_{j} y_{j} \Phi\left(\mathbf{x}_{j}\right) \cdot \Phi\left(\mathbf{x}_{i}\right)+b\right)-1\right\}=0, \\
f(\mathbf{z})=\operatorname{sign}(\mathbf{w} \cdot \Phi(\mathbf{z})+b)=\operatorname{sign}\left(\sum_{i=1}^{n} \lambda_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right) \cdot \Phi(\mathbf{z})+b\right) .
\end{array} .
\end{aligned}
$$

Learning NonLinear SVM

- Issues:
- What type of mapping function Φ should be used?
- How to do the computation in high dimensional space?
- Most computations involve dot product $\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \bullet \Phi\left(\mathrm{x}_{\mathrm{j}}\right)$
- Curse of dimensionality?

Learning Nonlinear SVM

- Kernel Trick:
$-\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \bullet \Phi\left(\mathrm{x}_{\mathrm{j}}\right)=\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
$-\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ is a kernel function (expressed in terms of the coordinates in the original space)
- Examples:

$$
\begin{aligned}
& K(\mathbf{x}, \mathbf{y})=(\mathbf{x} \cdot \mathbf{y}+1)^{p} \\
& K(\mathbf{x}, \mathbf{y})=e^{-\|\mathbf{x}-\mathbf{y}\|^{2} /\left(2 \sigma^{2}\right)} \\
& K(\mathbf{x}, \mathbf{y})=\tanh (k \mathbf{x} \cdot \mathbf{y}-\delta)
\end{aligned}
$$

Learning Nonlinear SVM

- Advantages of using kernel:
- Don't have to know the mapping function Φ
- Computing dot product $\Phi\left(\mathrm{x}_{\mathrm{i}}\right) \bullet \Phi\left(\mathrm{x}_{\mathrm{j}}\right)$ in the original space avoids curse of dimensionality
- Not all functions can be kernels
- Must make sure there is a corresponding Φ in some high-dimensional space
- Mercer's theorem (see textbook)

Characteristics of SVM

The learning problem is formulated as a convex optimization problem
Efficient algorithms are available to find the global minima Many of the other methods use greedy approaches and find locally optimal solutions High computational complexity for building the model

- Robust to noise
- Overfitting is handled by maximizing the margin of the decision boundary,
- SVM can handle irrelevant and redundant attributes better than many other techniques
- The user needs to provide the type of kernel function and cost function
- Difficult to handle missing values
- What about categorical variables?

Ensemble Methods

- Construct a set of base classifiers learned from the training data
- Predict class label of test records by combining the predictions made by multiple classifiers (e.g., by taking majority vote)

Example: Why Do Ensemble Methods Work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\epsilon=0.35$
- Majority vote of classifiers used for classification
- If all classifiers are identical:
- Error rate of ensemble $=\epsilon(0.35)$
- If all classifiers are independent (errors are uncorrelated):
- Error rate of ensemble = probability of having more than half of base classifiers being wrong

$$
e_{\text {ensemble }}=\sum_{i=13}^{25}\binom{25}{i} \epsilon^{i}(1-\epsilon)^{25-i}=0.06
$$

Necessary Conditions for Ensemble Methods

- Ensemble Methods work better than a single base classifier if:

1. All base classifiers are independent of each other
2. All base classifiers perform better than random guessing (error rate <0.5 for binary classification)

Classification error for an ensemble of 25 base classifiers, assuming their errors are uncorrelated.

Rationale for Ensemble Learning

- Ensemble Methods work best with unstable base classifiers
- Classifiers that are sensitive to minor perturbations in training set, due to high model complexity
- Examples: Unpruned decision trees, ANNs, ...

Bias-Variance Decomposition

- Analogous problem of reaching a target y by firing projectiles from x (regression problem)

- For classification, the generalization error of model m can be given by:

$$
\operatorname{gen.error}(m)=c_{1}+\operatorname{bias}(m)+c_{2} \times \operatorname{variance}(m)
$$

Bias-Variance Trade-off and Overfitting

- Ensemble methods try to reduce the variance of complex models (with low bias) by aggregating responses of multiple base classifiers

Constructing Ensemble Classifiers

- By manipulating training set
- Example: bagging, boosting, random forests
- By manipulating input features

Example: random forests

- By manipulating class labels

Example: error-correcting output coding

- By manipulating learning algorithm

Example: injecting randomness in the initial weights of ANN

Bagging (Bootstrap AGGregatING)

- Bootstrap sampling: sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Probability of a training instance being selected in a bootstrap sample is:
$>1-(1-1 / \mathrm{n})^{\mathrm{n}}$ (n : number of training instances)
$>\sim 0.632$ when n is large

Bagging Algorithm

Algorithm 4.5 Bagging algorithm.
1 : Let k be the number of bootstrap samples.
2: for $i=1$ to k do
3: \quad Create a bootstrap sample of size N, D_{i}.
4: Train a base classifier C_{i} on the bootstrap sample D_{i}
5: end for
6: $C^{*}(x)=\underset{y}{\operatorname{argmax}} \sum_{i} \delta\left(C_{i}(x)=y\right)$.
$\{\delta(\cdot)=1$ if its argument is true and 0 otherwise. $\}$

Bagging Example

- Consider 1-dimensional data set:

```
Original Data:
    |x
```

- Classifier is a decision stump (decision tree of size 1)
- Decision rule: $\mathrm{x} \leq \mathrm{k}$ versus $\mathrm{x}>\mathrm{k}$
- Split point k is chosen based on entropy

Bagging Example

Bagging Round 1:
x 0.1 0.2 0.2 0.3 0.4 0.4 y 1 1 1 1 -1 -.4 0.5 0.6

Bagging Example										
Bagging Round 6:										
x	0.2 1 0.4 1	[0.5								$x<0.75 \rightarrow y=-1$ $x>0.75 \rightarrow y=1$
Bagaing Round 7:										
y	$\mathrm{T}_{1} \mathrm{~T}^{-1}$	-	- -1	- ${ }^{-1}$	1	1	1	1	1	$x>0.75 \rightarrow y=1$
Bagaing Round 8:										
${ }^{\mathrm{x}}$	0.100	0.5								$x<=0.75 \rightarrow y=-1$ $x>0.75 \rightarrow y=1$
\underline{y}	${ }^{1} 1$	- 1	- 1	- 1	- ${ }^{-1}$	${ }_{-1}$	1	1		$x>0.75 \rightarrow \mathrm{y}=$
Bagaing Round 9:										
x	$0^{0.1}{ }^{0.3}$	0.4	${ }^{0.4}$		[0.7	${ }^{0.7}$	0.8			$x<0.75 \rightarrow y=-1$ $x>0.75 \rightarrow y=1$
\underline{y}	$1{ }_{1} 1$	- 1	${ }^{-1}$	- -1	${ }^{-1}$	-		1		$x>0.75 \rightarrow y=1$
Baging Round 10:										
$\frac{x}{y}$	0.10 .1	0.1	0.1		${ }^{0.3}$	${ }^{0.8}$	${ }^{0.8}$	0.9		$x=0.05 \rightarrow y=1$ $x>0.05 \rightarrow y=1$
	$1{ }_{1}^{11}$	1	1	1	1	1	1	1	1	$x>0.05 \rightarrow y=1$
										${ }_{130}$

Bagging Example

- Summary of Trained Decision Stumps:

Bagging Example

- Use majority vote (sign of sum of predictions) to determine class of ensemble classifier

Class

- Bagging can also increase the complexity (representation capacity) of simple classifiers such as decision stumps

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
- Initially, all N records are assigned equal weights (for being selected for training)
- Unlike bagging, weights may change at the end of each boosting round

Boosting

- Records that are wrongly classified will have their weights increased in the next round
- Records that are classified correctly will have their weights decreased in the next round

- Example 4 is hard to classify
- Its weight is increased, therefore it is more
likely to be chosen again in subsequent rounds

AdaBoost

- Base classifiers: $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{T}}$
- Error rate of a base classifier:
$\epsilon_{i}=\frac{1}{N} \sum_{j=1}^{N} w_{j}^{(i)} \delta\left(C_{i}\left(x_{j}\right) \neq y_{j}\right)$
- Importance of a classifier:

$$
\alpha_{i}=\frac{1}{2} \ln \left(\frac{1-\varepsilon_{i}}{\varepsilon_{i}}\right)
$$

AdaBoost Algorithm

- Weight update:
$w_{j}^{(i+1)}=\frac{w_{j}^{(i)}}{Z_{i}} \times \begin{cases}e^{-\alpha_{i}} & \text { if } C_{i}\left(x_{j}\right)=y_{j} \\ e^{\alpha_{i}} & \text { if } C_{i}\left(x_{j}\right) \neq y_{j}\end{cases}$
Where Z_{i} is the normalization factor
- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to $1 / \mathrm{n}$ and the resampling procedure is repeated
- Classificactiq(, $\left.^{2}\right)=\underset{y}{\arg \max } \sum_{i=1} \alpha_{i} \delta\left(C_{i}(x)=y\right)$

AdaBoost Example

- Consider 1-dimensional data set:

Original Data:

\mathbf{x}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
\mathbf{y}	1	1	1	-1	-1	-1	-1	1	1	1

- Classifier is a decision stump
- Decision rule: $\quad \mathrm{x} \leq \mathrm{k}$ versus $\mathrm{x}>\mathrm{k}$
- Split point k is chosen based on entropy

AdaBoost Example

- Training sets for the first 3 boosting rounds:

Boosting Round 2:

x	0.1	0.1	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3
y	1	1	1	1	1	1	1	1	1	1

Boosting Round 3:

- Summary

AdaBoost Example

- Weights

Round	$\mathrm{x}=0.1$	$\mathrm{x}=0.2$	$\mathrm{x}=0.3$	$\mathrm{x}=0.4$	$\mathrm{x}=0.5$	$\mathrm{x}=0.6$	$\mathrm{x}=0.7$	$\mathrm{x}=0.8$	$\mathrm{x}=0.9$
	$\mathrm{x}=1.0$								
	0.1	0.1	0.1	0.1	0.1	0.6	0.1	0.1	0.

1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01

2	0.311	0.311	0.311	0.01	0.01	0.01	0.01	0.01	0.01	0.01
3	0.029	0.029	0.029	0.228	0.228	0.228	0.228	0.009	0.009	0.009

- Classification

Random Forest Algorithm

- Construct an ensemble of decision trees by manipulating training set as well as features
- Use bootstrap sample to train every decision tree
(similar to Bagging)
- Use the following tree induction algorithm:
- At every internal node of decision tree, randomly sample p attributes for selecting split criterion
- Repeat this procedure until all leaves are pure (unpruned tree)

Gradient Boosting

- Constructs a series of models
- Models can be any predictive model that has a differentiable loss function
- Commonly, trees are the chosen model
- XGboost (extreme gradient boosting) is a popular package because of its impressive performance
- Boosting can be viewed as optimizing the loss function by iterative functional gradient descent.
- Implementations of various boosted algorithms are available in Python, R, Matlab, and more.

Characteristics of Random Forest

- Base classifiers are unpruned trees and hence are unstable classifiers
- Base classifiers are decorrelated (due to randomization in training set as well as features)
- Random forests reduce variance of unstable classifiers without negatively impacting the bias
- Selection of hyper-parameter p
- Small value ensures lack of correlation
- High value promotes strong base classifiers
- Common default choices: $\sqrt{d}, \log _{2}(d+1)$

Class Imbalance Problem

- Lots of classification problems where the classes are skewed (more records from one class than another)

Credit card fraud

- Intrusion detection

Defective products in manufacturing assembly line
COVID-19 test results on a random sample

- Key Challenge

- Evaluation measures such as accuracy are not well-suited for imbalanced class

Confusion Matrix

- Confusion Matrix:

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)
d: TN (true negative)
- Most widely-used metric:

Accuracy $=\frac{a+d}{a+b+c+d}=\frac{T P+T N}{T P+T N+F P+F N}$

Problem with Accuracy

- Consider a 2-class problem

Number of Class NO examples $=990$
Number of Class YES examples $=10$

- If a model predicts everything to be class NO, accuracy is 990/1000 = 99 \%

This is misleading because this trivial model does not detect any class YES xample
Detecting the rare class is usually more interesting (e.g., frauds, intrusions, defects, etc

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	0	10
	Class=No	0	990

Which model is better?

B

Alternative Measures				
${ }_{\text {actal }}^{\substack{\text { actual } \\ \text { Cluss }}}$	PREDICTED CLASS			
		${ }^{\text {casesemed }}$	Class-(0)	
	Class-No	10	${ }_{90}$	

Which of these classifiers is better?
A

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	40	10
	Class=No	10	40

Precision (p) $=0.8$
$\operatorname{Recall}(\mathrm{r})=0.8$
F- measure $(\mathrm{F})=0.8$
Accurac $\mathrm{y}=0.8$

	PREDICTED CLASS					
$\begin{array}{c}\text { ACTUAL } \\ \text { CLASS }\end{array}$		Class=Yes	40	Class=No		1000
:---	:---					

Precision $(p)=\sim 0.04$
$\operatorname{Recall}(\mathrm{r})=0.8$
F - measure $(\mathrm{F})=\sim 0.08$
Accuracy $=\sim 0.8$

Alternative Measures				
A	PREDICTED CLASS			$\begin{aligned} & \text { Precision }(\mathrm{p})=0.8 \\ & \operatorname{TPR}=\text { Recall }(\mathrm{r})=0.8 \\ & \mathrm{FPR}=0.2 \\ & \mathrm{~F}-\text { measure }(\mathrm{F})=0.8 \\ & \text { Accuracy }=0.8 \end{aligned}$
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	40	10	
	Class=No	10	40	$\frac{\mathrm{TPR}}{\mathrm{FPR}}=4$
B	PREDICTED CLASS			$\begin{aligned} & \text { Precision }(\mathrm{p})=0.038 \\ & \operatorname{TPR}=\operatorname{Recall}(\mathrm{r})=0.8 \\ & \mathrm{FPR}=0.2 \\ & \mathrm{~F}-\text { measure }(\mathrm{F})=0.07 \\ & \text { Accuracy }=0.8 \\ & \frac{\mathrm{TPR}}{\mathrm{FPR}}=4 \end{aligned}$
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	40	10	
	Class=No	1000	4000	

Which of these classifiers is better?

A	PREDICTED CLASS			$\begin{aligned} & \operatorname{Precision}(p)=0.5 \\ & T P R=\operatorname{Rec} \text { all }(r)=0.2 \\ & F P R=0.2 \end{aligned}$
		Class=Yes	Class=No	
	Class=Yes	10	40	
$\begin{aligned} & \text { ACTUAL } \\ & \text { CLASS } \end{aligned}$	Class=No	10	40	

B	PREDICTED CLASS			$\begin{aligned} & \operatorname{Prec} \text { ision }(p)=0.5 \\ & T P R=\operatorname{Rec} \text { all }(r)=0.5 \\ & F P R=0.5 \\ & F-\text { measure }=0.5 \end{aligned}$
ACTUAL CLASS		Class=Yes	Class=No	
	Class=Yes	25	25	
	Class=No	25	25	
C	PREDICTED CLASS			Precision (p) $=0.5$
ACTUAL CLASS		Class=Yes	Class=No	$\mathrm{TPR}=\operatorname{Rec}$ all (r$)=0.8$
	Class=Yes	40	10	$\mathrm{FPR}=0.8$
	Class=No	40	10	

ROC (Receiver Operating Characteristic)

- A graphical approach for displaying trade-off between detection rate and false alarm rate
- Developed in 1950s for signal detection theory to analyze noisy signals
- ROC curve plots TPR against FPR
- Performance of a model represented as a point in an ROC curve

RUC (Receiver Operating Characteristic)

- To draw ROC curve, classifier must produce continuous-valued output

Outputs are used to rank test records, from the most likely positive class record to the least likely positive class record
By using different thresholds on this value, we can create different variations of the classifier with TPR/FPR tradeoffs

- Many classifiers produce only discrete outputs (i.e., predicted class)
- How to get continuous-valued outputs?
- Decision trees, rule-based classifiers, neural networks, Bayesian classifiers, k-nearest neighbors, SVM
- Random guessing
- Below diagonal line:
- prediction is opposite of the true class

Example: Decision Trees

ROC Curve Example

How to Construct an ROC curve

Instance	Score	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use a classifier that produces a continuous-valued score for each instance
- The more likely it is for the instance to be in the + class, the higher the score
- Sort the instances in decreasing order according to the score
- Apply a threshold at each unique value of the score
- Count the number of TP, FP, TN, FN at each threshold
- $\mathrm{TPR}=\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$
- $\mathrm{FPR}=\mathrm{FP} /(\mathrm{FP}+\mathrm{TN})$

Using ROC for Model Comparison

- No model consistently outperforms the other
- M_{1} is better for small FPR
- M_{2} is better for large FPR
- Area Under the ROC curve (AUC)
- Ideal:
- Area $=1$
- Random guess: - Area $=0.5$

Dealing with Imbalanced Classes - Summary

- Many measures exists, but none of them may be ideal in all situations

Random classifiers can have high value for many of these measures
TPR/FPR provides important information but may not be sufficient by itself in many practical scenarios
Given two classifiers, sometimes you can tell that one of them is strictly
better than the other
C1 is strictly better than C 2 if C 1 has strictly better TPR and FPR relative to C 2 (or same TPR and better FPR , and vice versa)
Even if C 1 is strictly better than $\mathrm{C} 2, \mathrm{C} 1$'s F -value can be worse than C 2 's if they are evaluated on data sets with different imbalances
Classifier C 1 can be better or worse than C 2 depending on the scenario at hand (class imbalance, importance of TP vs FP, cost/time tradeoffs)

Which Classifer is better?

T1	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	
	Class=Yes	50	Class=No
	Class=No	1	99

Precision (p) $=0.98$ TPR $=$ Recall (r) $=0.5$ $\mathrm{FPR}=0.01$ TPR/FPR $=50$
$\mathrm{F}-$ measure $=0.66$
Precision (p) $=0.9$
$\mathrm{TPR}=\operatorname{Recall}(\mathrm{r})=0.99$ $\mathrm{FPR}=0.1$
$\mathrm{TPR} / \mathrm{FPR}=9$.

F - measure $=0.94$
Precision (p) $=0.99$
$\mathrm{TPR}=$ Recall $(\mathrm{r})=0.99$ $\mathrm{FPR}=0.01$ TPR/FPR $=99$
$\mathrm{F}-$ measure $=0.99$

Which Classifer is better? Medium skew wase

T1	PREDICTED CLASS		
		Class=Yes	Class=No
	Class=Yes	50	50
ACTUAL CLASS	Class=No	10	990

T2	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	99	1
	Class=No	100	900

T3	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	99	1
	Class=No	10	990

Precision (p) $=0.83$ TPR $=$ Recall $(\mathrm{r})=0.5$ $\mathrm{FPR}=0.01$ TPR/FPR $=50$
$\mathrm{F}-$ measure $=0.62$
Precision (p) $=0.5$
$\mathrm{TPR}=\operatorname{Recall}(\mathrm{r})=0.99$
$\mathrm{FPR}=0.1$
$\mathrm{TPR} / \mathrm{FPR}=9.9$
$\mathrm{F}-$ measure $=0.66$

Precision (p) $=0.9$ TPR $=$ Recall $(\mathrm{r})=0.99$ $\mathrm{FPR}=0.01$ TPR/FPR $=99$
$\mathrm{F}-$ measure $=0.94$

Which Classifer is better? ${ }_{\text {High Skew case }}$

T1	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	50	50
	Class=No	100	9900

T2	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	99	1
	Class=No	1000	9000

Precision (p) $=0.3$
TPR $=$ Recall $(r)=0.5$
$\mathrm{FPR}=0.01$
TPR $/$ FPR $=50$
$\mathrm{F}-$ measure $=0.375$
Precision (p) $=0.09$
TPR $=$ Recall $(r)=0.99$ FPR $=0.1$
$\mathrm{TPR} / \mathrm{FPR}=9.9$
$\mathrm{F}-$ measure $=0.165$

Precision (p) $=0.5$ $\mathrm{TPR}=$ Recall $(\mathrm{r})=0.99$ $\mathrm{FPR}=0.01$ TPR/FPR $=99$
$\mathrm{F}-$ measure $=0.66$

Building Classifiers with Imbalanced Training Set

- Modify the distribution of training data so that rare class is well-represented in training set
- Undersample the majority class
- Oversample the rare class

[^0]: - Another possible solution

