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Data Mining

Information Systems:

Fundamentals
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Informatics

• The term informatics broadly describes the 

study and practice of 

– creating, 

– storing, 

– finding, 

– manipulating 

– sharing 

information. 
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Informatics - Etymology

• In 1956 the German computer scientist Karl 

Steinbuch coined the word Informatik
• [Informatik: Automatische Informationsverarbeitung ("Informatics: 

Automatic Information Processing")]

• The French term informatique was coined in 

1962 by Philippe Dreyfus
• [Dreyfus, Phillipe. L’informatique. Gestion, Paris, June 1962, pp. 

240–41]

• The term was coined as a combination of 

information and automatic to describe the 

science of automating information interactions
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Informatics - Etymology

• The morphology—informat-ion + -ics—uses 

• the accepted form for names of sciences, 

– as conics, linguistics, optics, 

• or matters of practice, 

– as economics, politics, tactics

• linguistically, the meaning extends easily 

– to encompass both 

• the science of information 

• the practice of information processing.
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Data - Information - Knowledge

• Data

– unprocessed facts and figures without any added 

interpretation or analysis. 

• {The price of crude oil is $80 per barrel.}

• Information

– data that has been interpreted so that it has meaning 

for the user. 

• {The price of crude oil has risen from $70 to $80 per 

barrel}

– [gives meaning to the data and so is said to be information to 

someone who tracks oil prices.]
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Data - Information - Knowledge

• Knowledge

– a combination of information, experience and 

insight that may benefit the individual or the 

organisation. 

• {When crude oil prices go up by $10 per barrel, it's 

likely that petrol prices will rise by 2p per litre.}

– [This is knowledge]

– [insight: the capacity to gain an accurate and deep 

understanding of someone or something; an accurate and deep 

understanding]
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Converting data into information

• Data becomes information when it is applied to 

some purpose and adds value for the recipient. 

– For example a set of raw sales figures is data. 

• For the Sales Manager tasked with solving a problem of poor sales 

in one region, or deciding the future focus of a sales drive, the raw 

data needs to be processed into a sales report. 

– It is the sales report that provides information.
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Converting data into information

• Collecting data is expensive 

– you need to be very clear about why you need it 

and how you plan to use it. 

– One of the main reasons that organisations collect 

data is to monitor and improve performance. 

• if you are to have the information you need for control 

and performance improvement, you need to:

– collect data on the indicators that really do affect performance

– collect data reliably and regularly

– be able to convert data into the information you need.
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Converting data into information

• To be useful, data must satisfy a number of 

conditions. It must be:

– relevant to the specific purpose

– complete

– accurate

– timely

• data that arrives after you have made your decision is of 

no value
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Converting data into information

– in the right format

• information can only be analysed using a spreadsheet if 

all the data can be entered into the computer system

– available at a suitable price

• the benefits of the data must merit the cost of collecting 

or buying it.

• The same criteria apply to information. 

– It is important

• to get the right information 

• to get the information right

11

Converting information to knowledge

• Ultimately the tremendous amount of 

information that is generated is only useful if it 

can be applied to create knowledge within the 

organisation. 

• There is considerable blurring and confusion 

between the terms information and knowledge.
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Converting information to knowledge

• think of knowledge as being of two types:

– Formal, explicit or generally available knowledge. 

• This is knowledge that has been captured and used to 

develop policies and operating procedures for example.

– Instinctive, subconscious, tacit or hidden 

knowledge. 

• Within the organisation there are certain people who 

hold specific knowledge or have the 'know how'  

– {"I did something very similar to that last year and this 

happened….."}
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Converting information to knowledge

• Clearly, both types of knowledge are essential 

for the organisation.

• Information on its own will not create a 

knowledge-based organisation 

– but it is a key building block. 

• The right information fuels the development of 

intellectual capital 

– which in turns drives innovation and performance 

improvement.
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• The terms analysis and synthesis come from Greek

– they mean respectively "to take apart" and "to put together". 

– These terms are in scientific disciplines from mathematics 

and logic to economy and psychology to denote similar 

investigative procedures. 

• Analysis is defined as the procedure by which we 

break down an intellectual or substantial whole into 

parts. 

• Synthesis is defined as the procedure by which we 

combine separate elements or components in order to 

form a coherent whole.

Analysis
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• A system can be broadly defined as an integrated set of 

elements that accomplish a defined objective. 

• People from different engineering disciplines have 

different perspectives of what a "system" is. 

• For example, 

– software  engineers often refer to an integrated set of  computer 

programs as  a "system"

– electrical engineers might refer to complex integrated circuits 

or an integrated set of electrical units as a "system" 

• As can be seen, "system" depends on one’s perspective, 

and the “integrated set of elements that accomplish a 

defined objective” is an appropriate definition.

Definition(s) of system
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• A system is an assembly of parts where:

– The parts or components are connected together in an organized way.

– The parts or components are affected by being in the system (and are 

changed by leaving it).

– The assembly does something.

– The assembly has been identified by a person as being of special 

interest.

• Any arrangement which involves the handling, processing or 

manipulation of resources of whatever type can be represented 

as a system.

• Some definitions on online dictionaries

– http://en.wikipedia.org/wiki/System

– http://dictionary.reference.com/browse/systems

– http://www.businessdictionary.com/definition/system.html
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Definition(s) of system

• A system is defined as multiple parts working 

together for a common purpose or goal.

• Systems can be large and complex

– such as the air traffic control system or our global 

telecommunication network.  

• Small devices can also be considered as 

systems

– such as a pocket calculator, alarm clock, or 10-

speed bicycle.

Definition(s) of system
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• Systems have inputs, processes, and outputs.

• When feedback (direct or indirect) is involved,  

that component is also important to the 

operation of the system.  

• To explain all this, systems are usually 

explained using a model.  

• A model helps to illustrate the major elements 

and their relationship, as illustrated in the next 

slide

Definition(s) of system

19

A systems model

20

• The ways that organizations 

– Store 

– Move 

– Organize 

– Process 

their information 

21

Information Systems

• Components that implement information 

systems, 

– Hardware 

• physical tools: computer and network hardware, but also 

low-tech things like pens and paper 

– Software 

• (changeable) instructions for the hardware 

– People 

– Procedures 

• instructions for the people 

– Data/databases 

22

Information Technology 

23

Digital System

• Takes a set of discrete information (inputs) and 

discrete internal information (system state) and 

generates a set of discrete information (outputs).

System State

Discrete

Information

Processing

System

Discrete

Inputs Discrete

Outputs

24

Synchronous or 

Asynchronous?

Inputs: 

Keyboard, 

mouse, modem, 

microphone

Outputs: CRT, 

LCD, modem, 

speakers

Memory

Control
unit

Datapath

Input/Output

CPU

A Digital Computer Example
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Signal

• An information variable represented by physical 
quantity.

• For digital systems, the variable takes on discrete 
values.   

• Two level, or binary values are the most prevalent 
values in digital systems.

• Binary values are represented abstractly by:

– digits 0 and 1

– words (symbols) False (F) and True (T)

– words (symbols) Low (L) and High (H) 

– and words On and Off.

• Binary values are represented by values or ranges of 
values of physical quantities

A typical measurement system

26

Transducers

• A “transducer” is a device that converts energy from one 

form to another.  

• In signal processing applications, the purpose of energy 

conversion is to transfer information, not to transform 

energy.  

• In physiological measurement systems, transducers may be 

– input transducers (or sensors) 
• they convert a non-electrical energy into an electrical signal.

• for example, a microphone.

– output transducers (or actuators) 
• they convert an electrical signal into a non-electrical energy.

• For example, a speaker.

27 28

• The analogue signal 

– a continuous variable defined with infinite 
precision 

is converted to a discrete sequence of measured 
values which are represented digitally

• Information is lost in converting from analogue 
to digital, due to:

– inaccuracies in the measurement 

– uncertainty in timing 

– limits on the duration of the measurement 

• These effects are called quantisation errors

29

• The continuous analogue signal has to be held before 

it can be sampled

• Otherwise, the signal would be changing during the 

measurement

• Only after it has been held can the signal be measured, 

and the measurement converted to a digital value 

Signal Encoding: Analog-to Digital Conversion
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• ADC consists of four steps to digitize an analog 
signal:

1. Filtering

2. Sampling

3. Quantization

4. Binary encoding

▪ Before we sample, we have to filter the signal to 
limit the maximum frequency of the signal as it 
affects the sampling rate.

▪ Filtering should ensure that we do not distort the 
signal, ie remove high frequency components 
that affect the signal shape. 

Analog-to Digital Conversion

31 32

33

Sampling

• The sampling results in a discrete set of digital 

numbers that represent measurements of the signal 

– usually taken at equal intervals of time

• Sampling takes place after the hold

– The hold circuit must be fast enough that the signal is not 

changing during the time the circuit is acquiring the signal 

value

• We don't know what we don't measure

• In the process of measuring the signal, some 

information is lost

• Analog signal is sampled every TS secs.

• Ts is referred to as the sampling interval. 

• fs = 1/Ts is called the sampling rate or sampling 
frequency.

• There are 3 sampling methods:

– Ideal - an impulse at each sampling instant

– Natural - a pulse of short width with varying amplitude

– Flattop - sample and hold, like natural but with single 
amplitude value

• The process is referred to as pulse amplitude 
modulation PAM and the outcome is a signal with 
analog (non integer) values

Sampling

34

35

Recovery of a sampled sine wave for different sampling rates
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39 40

According to the Nyquist theorem, the 

sampling rate must be at least 2 times the 

highest frequency contained in the signal.

41

Sampling Theorem

Fs  2fm

Nyquist sampling rate for low-pass and bandpass signals

42
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• Sampling results in a series of pulses of varying 
amplitude values ranging between two limits: a 
min and a max.

• The amplitude values are infinite between the two 
limits.

• We need to map the infinite amplitude values onto 
a finite set of known values.

• This is achieved by dividing the distance between 
min and max into L zones, each of height 

 = (max - min)/L

Quantization

43

• The midpoint of each zone is assigned a 

value from 0 to L-1 (resulting in L values)

• Each sample falling in a zone is then 

approximated to the value of the midpoint. 

Quantization Levels

44

• Assume we have a voltage signal with 
amplitutes Vmin=-20V and Vmax=+20V.

• We want to use L=8 quantization levels.

• Zone width  = (20 - -20)/8 = 5

• The 8 zones are: -20 to -15, -15 to -10, -10 
to -5, -5 to 0, 0 to +5, +5 to +10, +10 to 
+15, +15 to +20

• The midpoints are: -17.5, -12.5, -7.5, -2.5, 
2.5, 7.5, 12.5, 17.5

Quantization Zones

45

• Each zone is then assigned a binary code.

• The number of bits required to encode the zones, 
or the number of bits per sample as it is commonly 
referred to, is obtained as follows: 

nb = log2 L

• Given our example, nb = 3

• The 8 zone (or level) codes are therefore: 000, 
001, 010, 011, 100, 101, 110, and 111

• Assigning codes to zones:

– 000 will refer to zone -20 to -15

– 001 to zone -15 to -10, etc.

Assigning Codes to Zones

46

Quantization and encoding of a sampled signal

47

• When a signal is quantized, we introduce an error 

– the coded signal is an approximation of the actual 
amplitude value.

• The difference between actual and coded value 
(midpoint) is referred to as the quantization error.

• The more zones, the smaller 

– which results in smaller errors.

• BUT, the more zones the more bits required to 
encode the samples 

– higher bit rate

Quantization Error

48
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Analog-to-digital Conversion

Example An 12-bit analog-to-digital converter (ADC) 

advertises an accuracy of ± the least significant bit (LSB).  

If the input range of the ADC is 0 to 10 volts, what is the 

accuracy of the ADC in analog volts?

Solution:

If the input range is 10 volts then the analog voltage represented by the LSB 

would be:

V
V

LSB = = = =
max

.
2

10

2

10

4096
002412Nu bits

 volts

Hence the accuracy would be ± 0.0024 volts.

49 50

Sampling related concepts

• Over/exact/under sampling

• Regular/irregular sampling

• Linear/Logarithmic sampling

• Aliasing

• Anti-aliasing filter

• Image

• Anti-image filter

51

Steps for digitization/reconstruction of a signal

• Band limiting (LPF)

• Sampling / Holding

• Quantization

• Coding

These are basic steps 

for A/D conversion 

• D/A converter

• Sampling / 

Holding

• Image rejection

These are basic steps 

for reconstructing 

a sampled digital 

signal 
52

Digital data: end product of A/D conversion and related 

concepts

• Bit: least digital information, binary 1 or 0

• Nibble: 4 bits

• Byte: 8 bits, 2 nibbles

• Word: 16 bits, 2 bytes, 4 nibbles

• Some jargon: 

– integer, signed integer, long integer, 2s 

complement, hexadecimal, octal, floating point, 

etc.

53 5454

Special Powers of 10 and 2 :

• Kilo- (K) = 1 thousand = 103 and 210

• Mega- (M) = 1 million = 106 and 220

• Giga- (G) = 1 billion = 109 and 230

• Tera- (T) = 1 trillion = 1012 and 240

• Peta- (P) = 1 quadrillion = 1015 and 250

Whether a metric refers to a power of ten or a power of 
two typically depends upon what is being measured.

Measures of capacity and speed in Computers

49 50

51 52

53 54
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• Hertz = clock cycles per second (frequency)

– 1MHz = 1,000,000Hz

– Processor speeds are measured in MHz or GHz.

• Byte = a unit of storage

– 1KB = 210 = 1024 Bytes

– 1MB = 220 = 1,048,576 Bytes

– Main memory (RAM) is measured in MB

– Disk storage is measured in GB for small systems, TB 

for large systems.

Example

5656

• Milli- (m) = 1 thousandth = 10 -3

• Micro- () = 1 millionth = 10 -6

• Nano- (n) = 1 billionth = 10 -9

• Pico- (p) = 1 trillionth = 10 -12

• Femto- (f) = 1 quadrillionth = 10 -15

Measures of time and space

57

Data types

• Our first requirement is to find a way to represent information 

(data) in a form that is mutually comprehensible by human and 

machine.

– Ultimately, we need to develop schemes for representing all 

conceivable types of information - language, images, 

actions, etc.

– Specifically, the devices that make up a computer are 

switches that can be on or off, i.e. at high or low voltage. 

– Thus they naturally provide us with two symbols to work 

with: 

• we can call them on and off, or 0 and 1.

58

What kinds of data do we need to represent?

Numbers

signed, unsigned, integers, floating point, complex, rational, irrational, …

Text

characters, strings, …

Images

pixels, colors, shapes, …

Sound

Logical

true, false

Instructions

…

Data type: 

– representation and operations within the computer

59

• Positive radix, positional number systems

• A number with radix r is represented by a 

string of digits:

An - 1An - 2 … A1A0 . A- 1 A- 2 … A- m + 1 A- m

in which 0  Ai < r and . is the radix point.

• The string of digits represents the power series:

( ) ( )(Number)r=  +
j = - m

j
j

i

i = 0
i rArA

(Integer Portion)  + (Fraction Portion)

i = n - 1 j = - 1

Number Systems – Representation

60

Decimal Numbers

• “decimal” means that we have ten digits to use in our 

representation 

– the symbols 0 through 9

• What is 3546?

– it is three thousands plus five hundreds plus four tens plus six 

ones.

– i.e. 3546 = 3×103 + 5×102 + 4×101 + 6×100

• How about negative numbers?

– we use two more symbols to distinguish positive and negative:

+ and -

55 56
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61

Decimal Numbers

• “decimal” means that we have ten digits to use in our 

representation (the symbols 0 through 9)

• What is 3546?

– it is three thousands plus five hundreds plus four tens plus 

six ones.

– i.e. 3546 = 3.103 + 5.102 + 4.101 + 6.100

• How about negative numbers?

– we use two more symbols to distinguish positive and 

negative:

+ and -
62

Unsigned Binary Integers

3-bits 5-bits 8-bits

0 000 00000 00000000

1 001 00001 00000001

2 010 00010 00000010

3 011 00011 00000011

4 100 00100 00000100

Y = “abc” = a.22 + b.21 + c.20

N = number of bits

Range is:

0  i  < 2N - 1

(where the digits a, b, c can each take on the values of 0 or 1 only)

Problem:

• How do we represent 

negative numbers?

63

Signed Binary Integers 
-2s Complement representation-

• Transformation

– To transform a into -a, invert all 

bits in a and add 1 to the result

-16 10000

… …

-3 11101

-2 11110

-1 11111

0 00000

+1 00001

+2 00010

+3 00011

… …

+15 01111

Range is:

-2N-1 < i  < 2N-1 - 1

Advantages:

• Operations need not check the 

sign

• Only one representation for zero

• Efficient use of all the bits
64

Limitations of integer representations

• Most numbers are not integer!
– Even with integers, there are two other considerations:

• Range:
– The magnitude of the numbers we can represent is 

determined by how many bits we use:
• e.g. with 32 bits the largest number we can represent is about +/- 2 

billion, far too small for many purposes.

• Precision:
– The exactness with which we can specify a number:

• e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 
figure precision in decimal repesentation.

• We need another data type!

65

Real numbers

• Our decimal system handles non-integer real numbers 

by adding yet another symbol - the decimal point (.) to 

make a fixed point notation:

– e.g. 3456.78 = 3.103 + 4.102 + 5.101 + 6.100 + 7.10-1 + 8.10-2

• The floating point, or scientific, notation allows us to 

represent very large and very small numbers (integer or 

real), with as much or as little precision as needed:

– Unit of electric charge  e = 1.602 176 462 x 10-19 Coulomb

– Volume of universe = 1 x 1085 cm3

• the two components of these numbers are called the mantissa and the 

exponent

66

Real numbers in binary 

• We mimic the decimal floating point notation to create a 

“hybrid” binary floating point number:

– We first use a “binary point” to separate whole numbers from 

fractional numbers to make a fixed point notation:

• e.g. 00011001.110 = 1.24 + 1.103 + 1.101 + 1.2-1 + 1.2-2 => 25.75

(2-1 = 0.5 and 2-2 = 0.25, etc.)

– We then “float” the binary point:

• 00011001.110 => 1.1001110 x 24

mantissa = 1.1001110, exponent = 4

– Now we have to express this without the extra symbols ( x, 2, . )

• by convention, we divide the available bits into three fields:

sign, mantissa, exponent

61 62
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67

IEEE-754 fp numbers - 1

s biased exp. fraction

1 8 bits 23 bits

N = (-1)s x 1.fraction x 2(biased exp. – 127)

32 bits:

• Sign: 1 bit

• Mantissa: 23 bits

– We “normalize” the mantissa by dropping the leading 1 and 
recording only its fractional part (why?) 

• Exponent: 8 bits

– In order to handle both +ve and -ve exponents, we add 127 
to the actual exponent to create a “biased exponent”:

• 2-127 => biased exponent = 0000 0000 (= 0)

• 20 => biased exponent = 0111 1111 (= 127)

• 2+127 => biased exponent = 1111 1110 (= 254)

68

IEEE-754 fp numbers - 2

• Example: Find the corresponding fp representation of 25.75

• 25.75 => 00011001.110 => 1.1001110 x 24

• sign bit = 0 (+ve)

• normalized mantissa (fraction) = 100 1110 0000 0000 0000 0000

• biased exponent = 4 + 127 = 131 => 1000 0011

• so 25.75 => 0 1000 0011 100 1110 0000 0000 0000 0000 => x41CE0000

• Values represented by convention:

– Infinity (+ and -): exponent = 255 (1111 1111) and fraction = 0

– NaN (not a number): exponent = 255 and fraction  0

– Zero (0): exponent = 0 and fraction = 0

• note: exponent = 0  =>  fraction is de-normalized, i.e no hidden 1

69

IEEE-754 fp numbers - 3

• Double precision (64 bit) floating point

1 11 bits 52 bits

N = (-1)s x 1.fraction x 2(biased exp. – 1023)

64 bits:

⚫ Range & Precision:
 32 bit: 

▪ mantissa of 23 bits + 1 => approx. 7 digits decimal

▪ 2+/-127 => approx. 10+/-38

 64 bit: 
▪ mantissa of 52 bits + 1 => approx. 15 digits decimal

▪ 2+/-1023 => approx. 10+/-306

s biased exp. fraction

70

• Flexibility of representation

– Within constraints below, can assign any binary 
combination (called a code word) to any data as long as 
data is uniquely encoded.

• Information Types

– Numeric
• Must represent range of data needed

• Very desirable to represent data such that simple, straightforward 
computation for common arithmetic operations permitted

• Tight relation to binary numbers

– Non-numeric
• Greater flexibility since arithmetic operations not applied.

• Not tied to binary numbers

Binary Numbers and Binary Coding

71

• Given n binary digits (called bits), a binary code is a 

mapping from a set of represented elements to a 

subset of the 2n binary numbers.

• Example: A

binary code

for the seven

colors of the

rainbow

• Code 100 is 

not used

Non-numeric Binary Codes

Binary Number

000

001

010

011

101

110

111

Color

Red

Orange

Yellow

Green

Blue

Indigo
Violet 

72

• Given M elements to be represented by a 
binary code, the minimum number of bits, n, 
needed, satisfies the following relationships:

2n > M > 2(n – 1) 

n =log2 M where x , called the ceiling
function, is the integer greater than or equal to x.

• Example: How many bits are required to 
represent decimal digits with a binary code?

– 4 bits are required (n =log2 9 = 4)

Number of Bits Required

67 68
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Number of Elements Represented

• Given n digits in radix r, there are rn distinct 
elements that can be represented.

• But, you can represent m elements, m < rn

• Examples:

– You can represent 4 elements in radix r = 2 with n
= 2 digits: (00, 01, 10, 11).  

– You can represent 4 elements in radix r = 2 with n
= 4 digits: (0001, 0010, 0100, 1000).

74

Binary Coded Decimal (BCD)

• In the 8421 Binary Coded Decimal (BCD) 

representation each decimal digit is converted to its 4-

bit pure binary equivalent 

• This code is the simplest, most intuitive binary code 

for decimal digits and uses the same powers of 2 as a 

binary number, 

– but only encodes the first ten values from 0 to 9.

• For example: (57)dec ➔ (?) bcd

(   5       7  ) dec

= (0101 0111)bcd

75

Error-Detection Codes

• Redundancy (e.g. extra information), in the form of 
extra bits, can be incorporated into binary code words 
to detect and correct errors.   

• A simple form of redundancy is parity, an extra bit 
appended onto the code word to make the number of 
1’s odd or even. 

– Parity can detect all single-bit errors and some multiple-bit 
errors.

• A code word has even parity if the number of 1’s in 
the code word is even.

• A code word has odd parity if the number of 1’s in the 
code word is odd.

76

4-Bit Parity Code Example

• Fill in the even and odd parity bits:

• The codeword "1111" has even parity and the 
codeword "1110" has odd parity.   Both can be used to 
represent 3-bit data.

Even Parity Odd Parity
Message - Parity Message - Parity

000 - 000 -
001 - 001 -
010 - 010 -
011 - 011 -
100 - 100 -
101 - 101 -
110 - 110 -
111 - 111 -

77

ASCII Character Codes

• American Standard Code for Information Interchange

• This code is a popular code used to represent 
information sent as character-based data.   

• It uses 7- bits to represent
– 94 Graphic printing characters

– 34 Non-printing characters

• Some non-printing characters are used for text format 
– e.g. BS = Backspace, CR = carriage return

• Other non-printing characters are used for record 
marking and flow control 
– e.g. STX = start text areas, ETX = end text areas.

ASCII Properties

• ASCII has some interesting properties:

• Digits 0 to 9 span Hexadecimal values 3016 to 

3916

• Upper case A-Z span 4116 to 5A16

• Lower case a-z span 6116 to 7A16
– Lower to upper case translation (and vice versa) occurs by

flipping bit 6

• Delete (DEL) is all bits set, 
– a carryover from when punched paper tape was used to 

store messages 
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UNICODE

• UNICODE extends ASCII to 65,536 

universal  characters codes

– For encoding characters in world languages

– Available in many modern applications

– 2 byte (16-bit) code words
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Warning: Conversion or Coding?

• Do NOT mix up "conversion of a decimal 

number to a binary number" with "coding a 

decimal number with a binary code".

• 1310 = 11012

–This is conversion

• 13  0001 0011BCD

–This is coding
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Another use for bits: Logic

• Beyond numbers

– logical variables can be true or false, on or off, etc., and so 
are readily represented by the binary system.

– A logical variable A can take the values false = 0 or true = 1
only.

– The manipulation of logical variables is known as Boolean 
Algebra, and has its own set of operations 

• which are not to be confused with the arithmetical operations.

– Some basic operations: NOT, AND, OR, XOR
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Basic Logic Operations

AND

A B A.B

0 0 0

0 1 0

1 0 0

1 1 1

OR

A B A+B

0 0 0

0 1 1

1 0 1

1 1 1

NOT

A A'

0 1

1 0

⚫Truth Tables of Basic Operations

• Equivalent Notations

– not A = A' = A

– A and B = A.B = AB = A intersection B

– A or B = A+B = AB = A union B
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More Logic Operations

– Exclusive OR (XOR): either A or B is 1, not both

– AB = A.B' + A'.B

XOR

A B AB

0 0 0

0 1 1

1 0 1

1 1 0

XNOR

A B (AB)'

0 0 1

0 1 0

1 0 0

1 1 1
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