BLM1612 - Circuit Theory

Examples

Example 36

- Answer: $\quad 60 e^{-0.25 t} \mathrm{~V}, 20 e^{-0.25 t} \mathrm{~V},-5 e^{-0.25 t} \mathrm{~A}$.

Example 35

- In the circuit, if $v_{C}(0)=15 \mathrm{~V}$, find v_{C}, v_{x}, i_{x} for $t>0$.

$$
R_{\mathrm{eq}}=\frac{20 \times 5}{20+5}=4 \Omega
$$

$\tau=R_{\mathrm{cq}} C=4(0.1)=0.4 \mathrm{~s}$
$v=v(0) e^{-t / \tau}=15 e^{-t / 0.4} \mathrm{~V}$
$v_{C}=v=15 e^{-2.5 t} \mathrm{~V}$
$v_{x}=\frac{12}{12+8} v=0.6\left(15 e^{-2.5 t}\right)=9 e^{-2.5 t} \mathrm{~V}$

$$
i_{x}=\frac{v_{x}}{12}=0.75 e^{-2.5 t} \mathrm{~A}
$$

For $t<0$ the switch is closed; the capacitor is an open circuit to dc.

$$
v_{C}(t)=\frac{9}{9+3}(20)=15 \mathrm{~V}
$$

$v_{C}(0)=V_{0}=15 \mathrm{~V}$

...Example 37

- For $t>0$ the switch is open; the voltage source is disconnected.

- The voltage across the capacitor for is
$v(t)=v_{C}(0) e^{-t / \tau}=15 e^{-t / 0.2} \mathrm{~V} \quad \Longrightarrow \quad v(t)=15 e^{-5 t} \mathrm{~V}$
- The initial energy stored in the capacitor is
$w_{C}(0)=\frac{1}{2} \operatorname{Cv}_{C}^{2}(0)=\frac{1}{2} \times 20 \times 10^{-3} \times 15^{2}=2.25 \mathrm{~J}$

Example 38

- If the switch in the circuit opens at $t=0$,
- find $v(t)$ for $t \geq 0$ and $w_{C}(0)$.
- Answer: $8 e^{-2 t} \mathrm{~V}, 5.333 \mathrm{~J}$

Example 39...

- In the circuit, if $i(0)=10 \mathrm{~A}$,
- find $i(t)$ and $v_{x}, i_{x}(t)$ for $t>0$.
- Method 1:

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{i_{0}} a \quad 2\left(i_{1}-i_{2}\right)+1=0 \Longrightarrow i_{1}-i_{2}=-\frac{1}{2} \\
& \begin{array}{c}
2\left(i_{1}-i_{2}\right)+1=0 \Longrightarrow i_{1}-i_{2} \\
6 i_{2}-2 i_{1}-3 i_{1}=0 \Longrightarrow i_{2}=\frac{5}{6} i_{1}
\end{array} \\
& i_{1}=-3 \mathrm{~A}, \quad i_{o}=-i_{1}=3 \mathrm{~A} \\
& \begin{array}{l}
R_{\mathrm{cq}}=R_{\mathrm{Th}}=\frac{v_{o}}{i_{o}}=\frac{1}{3} \Omega \quad \tau=\frac{L}{R_{\mathrm{cq}}}=\frac{1}{\frac{1}{3}}=\frac{3}{2} \mathrm{~s} \\
i(t)=i(0) e^{-t / \tau}=10 e^{-(2 / 3) t} \mathrm{~A}, \quad t>0
\end{array}
\end{aligned}
$$

Example 40

- Answer: $\quad 12 e^{-2 t} \mathrm{~A},-12 e^{-2 t} \mathrm{~V}, t>0$.

...Example 41

- Since the current through an inductor cannot change instantaneously,

$$
i(0)=i\left(0^{-}\right)=6 \mathrm{~A}
$$

- For $t>0$ the switch is open; the voltage source is disconnected.

$$
12 \Omega \begin{cases}\downarrow^{i(t)} & R_{\mathrm{eq}}=(12+4) \| 16=8 \Omega \\ 16 \Omega & 2 \mathrm{H}\end{cases}
$$

$i(t)=i(0) e^{-t / \tau}=6 e^{-4 t} \mathrm{~A}$

Example 42

- For the circuit, find $i(t)$ for $t>0$.
- Answer: $5 e^{-2 t} \mathrm{~A}, t>0$.

Example 43...

- The switch in the circuit has been open for a long time, and it is closed at $t=0$.
Find i_{0}, v_{0}, and i for all time
- For $t<0$ the switch is open; the inductor is short circuit in dc.

$i_{o}=0$
$i(0)=2$

$$
\begin{array}{ll}
i(t)=\frac{10}{2+3}=2 \mathrm{~A}, & t<0 \\
v_{o}(t)=3 i(t)=6 \mathrm{~V}, & t<0
\end{array}
$$

- For $t>0$ the switch is closed; voltage source is short-circuited

$R_{\mathrm{Th}}=3 \| 6=2 \Omega \quad \tau=\frac{L}{R_{\mathrm{Th}}}=1 \mathrm{~s}$
$i(t)=i(0) e^{-t / \tau}=2 e^{-t} \mathrm{~A}, \quad t>0$

...Example 43

- Since the inductor is in parallel with the 6Ω and 3Ω resistors,

$$
\begin{aligned}
& v_{o}(t)=-v_{L}=-L \frac{d i}{d t}=-2\left(-2 e^{-t}\right)=4 e^{-t} \mathrm{~V}, \quad t>0 \\
& i_{o}(t)=\frac{v_{L}}{6}=-\frac{2}{3} e^{-t} \mathrm{~A}, \quad t>0
\end{aligned}
$$

- For all time,

$$
i(t)= \begin{cases}2 \mathrm{~A}, & t<0 \\ 2 e^{-t} \mathrm{~A}, & t \geq 0\end{cases}
$$

$$
i_{o}(t)=\left\{\begin{array}{ll}
0 \mathrm{~A}, & t<0 \\
-\frac{2}{3} e^{-t} \mathrm{~A}, & t>0
\end{array}, \quad v_{o}(t)= \begin{cases}6 \mathrm{~V}, & t<0 \\
4 e^{-t} \mathrm{~V}, & t>0\end{cases}\right.
$$

Example 44

- Determine i, i_{o}, and v_{o} for all t in the circuit shown.
- Assume that the switch was closed for a long time.
- Answer:

$$
i=\left\{\begin{array}{ll}
16 \mathrm{~A}, & t<0 \\
16 e^{-2 t} \mathrm{~A}, & t \geq 0
\end{array} \quad i_{o}=\left\{\begin{array}{cc}
8 \mathrm{~A}, & t<0 \\
-5.333 e^{-2 t} \mathrm{~A}, & t>0
\end{array},\right.\right.
$$

$$
v_{o}= \begin{cases}32 \mathrm{~V}, & t<0 \\ 10.667 e^{-2 t} \mathrm{~V}, & t>0\end{cases}
$$

Example 45

- Express the voltage pulse (gate function) in terms of the unit step.
- Calculate its derivative and sketch it.

Example 47...

- Express the sawtooth function shown in the figüre in terms of singularity functions.
- Solution 1:

...Example 47...

- Solution 2:
$-v(t)$ is a multiplication of two functions:
- a ramp function and a gate function.

$$
\begin{aligned}
v(t) & =5 t[u(t)-u(t-2)] \\
& =5 t u(t)-5 t u(t-2) \\
& =5 r(t)-5(t-2+2) u(t-2) \\
& =5 r(t)-5(t-2) u(t-2)-10 u(t-2) \\
& =5 r(t)-5 r(t-2)-10 u(t-2)
\end{aligned}
$$

...Example 47

- Solution 3:
$-v(t)$ is a multiplication of two functions:
- a ramp function and a unit step function.

$v(t)=5 r(t) u(-t+2)$
$v(t)=5 r(t)[1-u(t-2)]$

Example 48

- Express $i(t)$ in terms of singularity functions.
- Answer:

$$
2 u(t)-2 r(t)+4 r(t-2)-2 r(t-3) \mathrm{A}
$$

Example 49

- Express the signal $g(t)$ in terms of step and $g(t)=\left\{\begin{aligned}-2, & 0<t<1 \\ 2 t-4, & t>1\end{aligned}\right.$ ramp functions.

$$
\begin{aligned}
g(t) & =3 u(-t)-2[u(t)-u(t-1)]+(2 t-4) u(t-1) \\
& =3 u(-t)-2 u(t)+(2 t-4+2) u(t-1) \\
& =3 u(-t)-2 u(t)+2(t-1) u(t-1) \\
& =3 u(-t)-2 u(t)+2 r(t-1) \\
g(t)= & 3[1-u(t)]-2 u(t)+2 r(t-1)=3-5 u(t)+2 r(t-1)
\end{aligned}
$$

Example 50

$$
h(t)=\left\{\begin{array}{lll}
0, & t<0 & \text { • Express } h(t) \text { in terms } \\
-4, & 0<t<2 & \text { of the singularity } \\
3 t-8, & 2<t<6 \\
0, & t>6 & \text { functions. }
\end{array}\right.
$$

- Answer:
$-4 u(t)+2 u(t-2)+3 r(t-2)-10 u(t-6)-3 r(t-6)$

Example 51

- Evaluate the following $\int_{0}^{10}\left(t^{2}+4 t-2\right) \delta(t-2) d t$ integrals involving
the impulse function: $\int_{-\infty}^{\infty}\left[\delta(t-1) e^{-t} \cos t+\delta(t+1) e^{-t} \sin t\right] d t$
$\int_{0}^{10}\left(t^{2}+4 t-2\right) \delta(t-2) d t=\left.\left(t^{2}+4 t-2\right)\right|_{t=2}=4+8-2=1($

$$
\begin{aligned}
-\infty & {\left[\delta(t-1) e^{-t} \cos t+\delta(t+1) e^{-t} \sin t\right] d t } \\
& =\left.e^{-t} \cos t\right|_{t=1}+\left.e^{-t} \sin t\right|_{t=-1} \\
& =e^{-1} \cos 1+e^{1} \sin (-1)=0.1988-2.2873=-2.0885
\end{aligned}
$$

Example 52

- Evaluate the following integrals:

- Answer: 28, -1

