BLM1612 - Circuit Theory

Examples

Example 02

- In the circuit below, $v_{\mathrm{in}}=3 \sin (\omega \mathrm{t}) \mathrm{mV}$ and $g_{\mathrm{m}}=10 \mathrm{~A} / \mathrm{V}$. Determine $v_{\text {out }}$.

$$
\begin{aligned}
& v_{\text {out }}=-g_{m} v_{x} \times R \\
& v_{\text {out }}=-10 \times 3 \sin (\omega t) \times 2 \\
& v_{\text {out }}=-60 \sin (\omega t) \mathrm{mV}
\end{aligned}
$$

Example 01

- Given the following current graph through an element, what is the net charge that passes through the element between $t=4$ and $t=8$ seconds?

$$
q=\int_{t_{1}}^{t_{2}} i d t=\int_{4}^{8} 6 d t=\left.6 t\right|_{4} ^{8}=6(8-4)=24 \mathrm{C}
$$

- or for constant current

$$
q=i \times \Delta t=6(8-4)=24 \mathrm{C}
$$

Example 03

- In the circuit below, determine the power absorbed by the $5 \mathrm{k} \Omega$ resistor.

- Short circuit across $4 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ resistors.

No current through $5 \mathrm{k} \Omega$ resistor.

- Therefore

$$
P_{\mathrm{abs}}=0 \mathrm{~W}
$$

Example 04...

The charge that enters the BOX is given below. Calculate and sketch the current flowing into and the power absorbed by the BOX between 0 and 10 ms .

$$
i(t)=\frac{d q(t)}{d t}
$$

...Example 04...

```
Recall that current is related to charge by i(t)=\frac{dq(t)}{dt}\mathrm{ . The current is equal to the slope of}\mathbf{}\mathrm{ . }
the charge waveform.
\begin{tabular}{rlrl}
\(i(t)\) & \(=0\) & \(0 \leq t \leq 1 \mathrm{~ms}\) \\
\(i(t)\) & \(=\frac{3 \times 10^{-3}-1 \times 10^{-3}}{2 \times 10^{-3}-1 \times 10^{-3}}=2 \mathrm{~A}\) & \(1 \leq t \leq 2 \mathrm{~ms}\) \\
\(i(t)\) & \(=0\) & \(2 \leq t \leq 3 \mathrm{~ms}\) \\
\(i(t)\) & \(=\frac{-2 \times 10^{-3}-3 \times 10^{-3}}{5 \times 10^{-3}-3 \times 10^{-3}}=-2.5 \mathrm{~A}\) & \(3 \leq t \leq 5 \mathrm{~ms}\) \\
\(i(t)\) & \(=0\) & \(5 \leq t \leq 6 \mathrm{~ms}\) \\
\(i(t)\) & \(=\frac{2 \times 10^{-3}-\left(-2 \times 10^{-3}\right)}{9 \times 10^{-3}-6 \times 10^{-3}}=1.33 \mathrm{~A}\) & \(6 \leq t \leq 9 \mathrm{~ms}\) \\
\(i(t)\) & \(=0\) & & \(t \geq 9 \mathrm{~ms}\)
\end{tabular}
```


...Example 04

The power absorbed by the BOX is 12 - ift

$p(t)=12^{*} 0=0$	$0 \leq t \leq 1 \mathrm{~ms}$
$p(t)=12^{*} 2=24 \mathrm{~W}$	$1 \leq t \leq 2 \mathrm{~ms}$
$p(t)=12^{*} 0=0$	$2 \leq t \leq 3 \mathrm{~ms}$
$p(t)=12^{*}(-2.5)=-30 \mathrm{~W}$	$3 \leq t \leq 5 \mathrm{~ms}$
$p(t)=12^{*} 0=0$	$5 \leq t \leq 6 \mathrm{~ms}$
$p(t)-12^{*} 1.33-16 \mathrm{~W}$	$6 \leq t \leq 9 \mathrm{~ms}$
$p(t)=12^{*} 0=0$	$t \geq 9 \mathrm{~ms}$

Example 05

- Use Tellegen's theorem to find the current I_{O} in the network below.

$$
\begin{aligned}
P_{2 \mathrm{~A}} & =(6)(-2)=-12 \mathrm{~W} \\
P_{1} & =(6)\left(I_{o}\right)=6 I_{0} \mathrm{~W} \\
P_{2} & =(12)(-9)=-108 \mathrm{~W} \\
P_{3} & =(10)(-3)=-30 \mathrm{~W} \\
P_{4 \mathrm{~V}} & =(4)(-8)=-32 \mathrm{~W} \\
P_{D S} & =\left(8 I_{x}\right)(11)=(16)(11)=176 \mathrm{~W}
\end{aligned}
$$

Applying Tellegen's theorem yields

\[\)| $-12+6 I_{o}-108-30-32+176=0$ |
| ---: |
| or |
| Hence, $6 I_{o}+176=12+108+30+32$ |
| |
| $\qquad I_{o}=1 \mathrm{~A}$ |

\]

