BLM1612 - Circuit Theory

Prof. Dr. Nizamettin AYDIN <u>naydin@yildiz.edu.tr</u> www.yildiz.edu.tr/~naydin

Filters and Bode Plots

Filters

• Objective of Lecture - Describe the filter types and functions.

- Any combination of passive (*R*, *L*, and *C*) and/or active (transistors or operational amplifiers) elements designed to select or reject a band of frequencies is called a filter.
- In general, there are two classifications of filters:
 - Passive filters
 - series or parallel combinations of *R*, *L*, and *C* elements.
 - Active filters
 - transistors and operational amplifiers in combination with *R*, *L*, and *C* elements.

R-C LOW-PASS FILTER

R-C LOW-PASS FILTER

Solving for \mathbf{V}_o and substituting $\mathbf{V}_i = V_i \angle 0^\circ$ gives

$$\mathbf{V}_{o} = \left[\frac{X_{C}}{\sqrt{R^{2} + X_{C}^{2}}} \angle \theta\right] \mathbf{V}_{i} = \left[\frac{X_{C}}{\sqrt{R^{2} + X_{C}^{2}}} \angle \theta\right] V_{i} \angle 0^{\circ}$$
$$\mathbf{V}_{o} = \frac{X_{C} V_{i}}{\sqrt{R^{2} + X_{C}^{2}}} \angle \theta$$

and

The angle θ is, therefore, the angle by which \mathbf{V}_o leads \mathbf{V}_i . Since $\theta = -\tan^{-1} R/X_c$ is always negative (except at f = 0 Hz), it is clear that \mathbf{V}_o will always lag \mathbf{V}_i , leading to the label *lagging network* for the network in Fig. in Slt. 5

R-C LOW-PASS FILTER

• In summary, for the low-pass *R*-*C* filter:

R-C HIGH-PASS FILTER

At any intermediate frequency, the output voltage can be determined using the voltage divider rule:

$$\mathbf{V}_{o} = \frac{R \angle 0^{\circ} \mathbf{V}_{i}}{R - j X_{C}}$$

or
$$\frac{\mathbf{V}_{o}}{\mathbf{V}_{i}} = \frac{R \angle 0^{\circ}}{R - j X_{C}} = \frac{R \angle 0^{\circ}}{\sqrt{R^{2} + X_{C}^{2}} \angle -\tan^{-1}(X_{C}/R)}$$

and
$$\frac{\mathbf{V}_{o}}{\mathbf{V}_{i}} = \frac{R}{\sqrt{R^{2} + X_{C}^{2}}} \angle \tan^{-1}(X_{C}/R)$$

R-C HIGH-PASS FILTER

• In summary, for the high-pass *R*-*C* filter:

$$f_c = \frac{1}{2\pi RC}$$
For $f < f_c$, $V_o < 0.707V_i$
whereas for $f > f_c$, $V_o > 0.707V_i$
At f_c , \mathbf{V}_o leads \mathbf{V}_i by 45°

Bode Plots

- The frequency range required in frequency response is often so wide that it is inconvenient to use a linear scale for the frequency axis.
- Standard practice to plot the transfer function on a pair of semilogarithmic plots:
 - The magnitude in decibels is plotted against the logarithm of the frequency;
 - The phase in degrees is plotted against the logarithm of the frequency.
- Bode plots are semilog plots of the magnitude (in decibels) and phase (in degrees) of a transfer function versus frequency.

