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2nd Order Circuits

BLM1612 - Circuit Theory
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2nd Order Circuits
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Objective of Lecture

• Demonstrate how to determine the boundary 

conditions on the voltages and currents in a 2nd

order circuit.  

– These boundary conditions will be used when 

calculating the transient response of the circuit.
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2nd Order Circuits

• A second-order circuit is characterized by a 

second-order differential equation. 

– The circuit will contain at least one resistor and the 

equivalent of two energy storage elements

• 2 capacitors, 2 inductors, or a capacitor and an inductor
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Boundary Conditions

• Steady state

– For step response functions u(t- to) for all times 

between

t = +/- ∞ except for some time period after t =  to

• Capacitors are open circuits

• Inductors are short circuits

• During the transition at the step t = to

– Voltage across a capacitor is continuous

• vC(to 
+) = vC (to 

-)

– Current through an inductor is continuous

• iL(to 
+) = iL(to 

-)
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Initial Condition

• Redraw the circuit at t < to

• Determine the value of all voltage and current 
sources at t< to

• Make the appropriate substitutions for the energy 
storage devices.

– Substitute an open circuit (∞W resistor) for all 
capacitors.

• Note: IC(t < to ) = 0A.

– Substitute an short circuit (0W resistor) for all 
inductors.

• Note: VL(t < to ) = 0V.

• Calculate VC(t < to ) and IL(t < to ).
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Final Condition

• Redraw the circuit at t = ∞ s

• Determine the value of all voltage and current 
sources at t = ∞ s

• Make the appropriate substitutions for the energy 
storage devices.

– Substitute an open circuit (∞W resistor) for all 
capacitors.

• Note: iC(t =∞ s) = 0A.

– Substitute an short circuit (0W resistor) for all 
inductors.

• Note: vL(t =∞ s) = 0V.

• Calculate vC(t =∞ s) and iL(t =∞ s).
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Example 01…

• The switch in the circuit has been closed for a 

long time. It is open at t = t0.

– Find the Boundary Conditions

• iL, vL, iC, vC
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…Example 01…

• At the initial condition the circuit is:

iL (-∞) = iL (to
-) = 0 A vL (-∞) = vL (to

-) = 0 V 

iC (-∞) = iC (to
-) = 0 A vC (-∞) = vC (to

-) = [R2/(R1+R2)]V1
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∞W

…Example 01…

• At the final condition the switch opens,

– which removes V1 and R1 from the circuit.

– The energy stored in the 

inductor and capacitor will 

be dissipated through R2 and 

R3 as t increased from t = to.
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R2

…Example 01

• At time t = ∞s, the energy 

stored in the inductor and 

in the capacitor will be 

completely released to the 

circuit.

iL (∞s) = 0 A vL (∞s) = 0 V iC (∞s) = 0 A vC (∞s) = 0 V

• For to < t << ∞s 

iL (t) ≠ 0 A vL (t) ≠ 0 V

iC (t) ≠ 0 A vC (t) ≠ 0 V

∞W
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Example 02…

• The switch in the circuit has been closed for a 

long time. It is open at t = t0.

– Find the Boundary Conditions

• iL, vL, iC, vC
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…Example 02

iL (-∞s) = 0.3 mA

vL (-∞s) = 0 V

iC (-∞s) = 0 A

vC (-∞s) = 3.5 V
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iL (∞s) = 0 A

vL (∞s) = 0 V

iC (∞s) = 0 A

vC (∞s) = 5 V

t < to t >> to

Example 03…

• The switch in the circuit has been open for a 

long time. It is open at t = t0.

– Find the Boundary Conditions

• iL1, vL1, iL2, vL2
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…Example 03…

iL1 (-∞s) = -1 mA vL1 (-∞s) = 0 V

iL2 (-∞s) = 1 mA vL1 (-∞s) = 0 V
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t < to

…Example 03
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t > to

t >> to

iL1 (∞s) = -1 mA vL1 (∞s) = 0 V

iL2 (∞s) = 1.4 mA vL2(∞s) = 0 V

Example 04…

• The switch in the circuit has been closed for a 

long time. It is closed at t = 0.

– Find the Boundary Conditions

• iL, vL, iC1, vC1, iC2, vC2
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iL1 (-∞s) = -1 mA vL1 (-∞s) = 0 V

iC1 (-∞s) = iC2 (-∞s) = 0 A vC1 (-∞s) = vC2 (-∞s) = 4 V

…Example 04…
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t < 0
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…Example 04

iL1 (∞s) = 0mA vL1 (∞s) = 0V

vC1 (∞s) = vC2 (∞s) = 1V iC1 (∞s) = iC2 (∞s) = 0A
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t >> 0

Summary

• Calculation of the initial and final conditions for 2nd

order circuits requires:
– Knowledge of the magnitude of the voltage and/or current

sources in the circuit before and after a step function transition.

– In steady state (t < to and t = ∞s), replace energy storage devices.
• Capacitors are opens circuits => iC = 0 A

• Inductors are short circuits => vL = 0 V

– Calculate the voltage across the capacitor and the current 
through the inductor.

• During the transition at the step t = to

– Voltage across a capacitor is continuous
• vC(to 

+) = vC (to 
-)

– Current through an inductor is continuous
• iL(to 

+) = iL(to 
-)
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Source-Free RLC Circuit-Series RLC Network

• Objective of Lecture 

– Derive the equations that relate the voltages across 
and currents flowing through a resistor, an inductor, 
and a capacitor in series as:

• the unit step function associated with voltage or current 
source changes from 1 to 0 or

• a switch disconnects a voltage or current source into the 
circuit.

– Describe the solution to the 2nd order equations 
when the condition is:

• Overdamped

• Critically Damped

• Underdamped
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Series RLC Network

• With a step function voltage source.
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Boundary Conditions

• You must determine the initial condition of the 

inductor and capacitor at t < to and then find the 

final conditions at t = ∞s.

– Since the voltage source has a magnitude of 0 V at t < to

• i(to
-) = iL(to

-) = 0 A and vC(to
-) = Vs 

• vL(to
-) = 0 V and iC(to

-) = 0 A

– Once the steady state is reached after the voltage source 

has a magnitude of Vs at t > to, replace the capacitor 

with an open circuit and the inductor with a short 

circuit.

• i(∞s) = iL(∞s) = 0 A and vC(∞s) = 0 V 

• vL(∞s) = 0 V and iC(∞s) = 0 A
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Selection of Parameter

• Initial Conditions

– i(to
-) = iL(to

-) = 0 A and vC(to
-) = Vs 

– vL(to
-) = 0 V and iC(to

-) = 0 A

• Final Conditions

– i(∞s) = iL(∞s) = 0A and vC(∞s) = 0 V 

– vL(∞s) = 0 V and iC(∞s) = 0 A

• Since the voltage across the capacitor is the 
only parameter that has a non-zero boundary 
condition, the first set of solutions will be for 
vC(t).

24
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Kirchhoff’s Voltage Law
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Second order

Differential Equation

General Solution…

Let vC(t) = AesDt
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Characteristic Equation

Roots of

Characteristic Equation
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…General Solution…
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• A more compact way of expressing the roots:

• The roots s1and s2 are called natural frequencies, measured in

nepers per second (Np/s), 

– because they are associated with the natural response of the circuit; 

• 0 is known as the resonant frequency or strictly as the 

undamped natural frequency, expressed in radians per second 

(rad/s); 

•  is the neper frequency or the damping factor, expressed in 

nepers per second.
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….General Solution

29

Solve for Coefficients A1 and A2

• Use the boundary conditions at to
- and t = ∞s to 

solve for A1 and A2.

– Since the voltage across a capacitor must be a 

continuous function of time.

– Also know that
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Three types of solutions

• From these equations, we can infer that there 

are three types of solutions:

– If   0 , we have the overdamped case.

– If   0 , we have the critically damped case.

– If  < 0 , we have the underdamped case.

• We will consider each of these cases separately.

31

Three types of solutions

• Overdamped Case (   o 

– implies that C > 4L/R2

• s1 and s2 are negative and real numbers

• Critically damped Case (   o 

– implies that C = 4L/R2

• s1 = s2 = -  = -R/2L
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Three types of solutions

• Underdamped Case (  < o 

– implies that C < 4L/R2

• , i is used by the mathematicians for imaginary 

numbers 
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v(t)
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Three types of solutions

Angular Frequencies

• o is called the undamped natural frequency

– The frequency at which the energy stored in the 

capacitor flows to the inductor and then flows back 

to the capacitor.  

• If R = 0W, this will occur forever.

• d is called the damped natural frequency

– Since the resistance of R is not usually equal to 

zero, some energy will be dissipated through the 

resistor as energy is transferred between the 

inductor and capacitor. 

•  determined the rate of the damping response.

35 36

Three types of solutions
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Properties of RLC network

• Behavior of RLC network is described as 

damping, which is a gradual loss of the initial 

stored energy

– The resistor R causes the loss

–  determined the rate of the damping response

• If R = 0, the circuit is loss-less and energy is shifted back 

and forth between the inductor and capacitor forever at 

the natural frequency.  
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Properties of RLC network

– Oscillatory response of a lossy RLC network is possible 
because the energy  in the inductor and capacitor can be 
transferred from one component to the other.

• Underdamped response is a damped oscillation, which is 
called ringing. 

• Critically damped circuits reach the final steady 
state in the shortest amount of time as 
compared to overdamped and underdamped 
circuits.

– However, the initial change of an overdamped or 
underdamped circuit may be greater than that 
obtained using a critically damped circuit.
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Set of Solutions when t > to

• There are three different solutions which 

depend on the magnitudes of the coefficients of 

the            and the          terms.  

– To determine which one to use, you need to 

calculate the natural angular frequency of the series 

RLC network and the term .
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Transient Solutions when t > to

• Overdamped response ( > o)

• Critically damped response ( = o)

• Underdamped response ( < o)
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Find Coefficients

• After you have selected the form for the 

solution based upon the values of o and 

– Solve for the coefficients in the equation by 

evaluating the equation at t = to
- and t = ∞s using 

the initial and final boundary conditions for the 

voltage across the capacitor.

• vC(to
-) = Vs

• vC(∞s) = 0 V
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Other Voltages and Currents

• Once the voltage across the capacitor is known, 

the following equations for the case where t > to 

can be used to find:
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Solutions when t < to

• The initial conditions of all of the components 

are the solutions for all times -∞s < t < to.

– vC(t) = Vs

– iC(t) = 0 A

– vL(t) = 0 V

– iL(t) = 0 A

– vR(t) = 0 V

– iR(t) = 0 A
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Summary

• The set of solutions when t > to for the voltage 
across the capacitor in a RLC network in series 
was obtained.
– Selection of equations is determine by comparing the 

natural frequency o to .

– Coefficients are found by evaluating the equation and 
its first derivation at t = to

- and t = ∞s.

– The voltage across the capacitor is equal to the initial 
condition when t < to

• Using the relationships between current and 
voltage, the current through the capacitor and the 
voltages and currents for the inductor and resistor 
can be calculated.
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Source-Free RLC Circuit-Parallel RLC Network

• Objective of Lecture

– Derive the equations that relate the voltages across 
and currents flowing through a resistor, an inductor, 
and a capacitor in parallel as:

• the unit step function associated with voltage or current 
source changes from 1 to 0 or

• a switch disconnects a voltage or current source into the 
circuit.

– Describe the solution to the 2nd order equations 
when the condition is:

• Overdamped

• Critically Damped

• Underdamped
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RLC Network

• A parallel RLC network where the current 

source is switched out of the circuit at t = to.
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Boundary Conditions

• You must determine the initial condition of the 

inductor and capacitor at t < to and then find the 

final conditions at t = ∞s.

– Since the voltage source has a magnitude of 0V at t < to

• iL(to
-) = Is and v(to

-) = vC(to
-) = 0 V 

• vL(to
-) = 0V and iC(to

-) = 0 A

– Once the steady state is reached after the voltage source 

has a magnitude of Vs at t > to, replace the capacitor 

with an open circuit and the inductor with a short 

circuit.

• iL(∞s) = 0A and v(∞s) = vC(∞s) = 0 V 

• vL(∞s) = 0V and iC(∞s) = 0 A
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Selection of Parameter

• Initial Conditions

– iL(to
-) = Is and v(to

-) = vC(to
-) = 0 V 

– vL(to
-) = 0V and iC(to

-) = 0 A

• Final Conditions

– iL(∞s) = 0A and v(∞s) = vC(∞s) = 0 V

– vL(∞s) = 0V and iC(∞s) = 0 A

• Since the current through the inductor is the 
only parameter that has a non-zero boundary 
condition, the first set of solutions will be for 
iL(t).
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Kirchoff’s Current Law
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General Solution

LCRCRC
s

LCRCRC
s

1

2

1

2

1

1

2

1

2

1

2

2

2

1





















0
112 

LC
s

RC
s

50

LC

RC

o

1

2

1









22

2

22

1

o

o

s

s









02 22  oss 

Note that the equation for the natural frequency of the RLC 
circuit is the same whether the components are in series or in 
parallel.
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Three types of solutions

• Overdamped Case (  o 

– implies that L > 4R2C

• s1 and s2 are negative and real numbers
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Three types of solutions

• Critically Damped Case (   o 

– implies that L = 4R2C

• s1 = s2 = -  = -1/2RC
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Three types of solutions

• Underdamped Case (  < o 

– implies that L < 4R2C
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Other Voltages and Currents

• Once current through the inductor is known:
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Summary

• The set of solutions when t > to for the current 
through the inductor in a RLC network in parallel 
was obtained.
– Selection of equations is determine by comparing the 

natural frequency o to .

– Coefficients are found by evaluating the equation and 
its first derivation at t = to

- and t = ∞s.

– The current through the inductor is equal to the initial 
condition when t < to

• Using the relationships between current and 
voltage, the voltage across the inductor  and the 
voltages and currents for the capacitor and resistor 
can be calculated.
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Summary of Relevant Equations for Source-Free RLC Circuits

57
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Step Response-Series RLC Network

• Objective of Lecture

– Derive the equations that relate the voltages across 

a resistor, an inductor, and a capacitor in series as:

• the unit step function associated with voltage or current 

source changes from 0 to 1 or

• a switch connects a voltage or current source into the 

circuit.

– Describe the solution to the 2nd order equations 

when the condition is:

• Overdamped

• Critically Damped

• Underdamped
58

Series RLC Network

• With a step function voltage source.
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Boundary Conditions

• You must determine the initial condition of the 

inductor and capacitor at t < to and then find the 

final conditions at t = ∞s.

– Since the voltage source has a magnitude of 0V at t< to

• i(to
-) = iL(to

-) = 0 A and vC(to
-) = 0 V 

• vL(to
-) = 0 V and iC(to

-) = 0 A

– Once the steady state is reached after the voltage 

source has a magnitude of Vs at t > to, replace the 

capacitor with an open circuit and the inductor with a 

short circuit.

• i(∞s) = iL(∞s) = 0 A and vC(∞s) = Vs 

• vL(∞s) = 0 V and iC(∞s) = 0 A

60
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Selection of Parameter

• Initial Conditions

– i(to
-) = iL(to

-) = 0 A and vC(to
-) = 0 V 

– vL(to
-) = 0 V and iC(to

-) = 0 A

• Final Conditions

– i(∞s) = iL(∞s) = 0 A and vC(∞s) = Vs 

– vL(∞s) = 0 V and iC(∞s) = 0 A

• Since the voltage across the capacitor is the 
only parameter that has a non-zero boundary 
condition, the first set of solutions will be for 
vC(t).
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Kirchhoff’s Voltage Law
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Set of Solutions when t > to

• Similar to the solutions for the natural response, 

there are three different solutions.  

• To determine which one to use, you need to 

calculate the natural angular frequency of the 

series RLC network and the term .
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Transient Solutions when t > to

• Overdamped response ( > o)

where t-to = Dt

• Critically damped response ( = o)

• Underdamped response ( < o)

2

0

2

2

2

0

2

1

21
21)(










DD

s

s

eAeAtv
tsts

C

t

C etAAtv DD )()( 21

)(   ,      , 

)]sin()cos([)(

212211

22

21

AAjBAAB

etBtBtv

od

t

ddC



DD D



 

64

Steady State Solutions when t > to

• The final condition of the voltages across the 

capacitor is the steady state solution.

– vC(∞s) = Vs 
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Complete Solution when t > to

• Overdamped response

• Critically damped response

• Underdamped response
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Other Voltages and Currents

• Once the voltage across the capacitor is known, 

the following equations for the case where t > to 

can be used to find:
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Summary

• The set of solutions when t > to for the voltage across the 
capacitor in a RLC network in series was obtained.

– The final condition for the voltage across the capacitor is 
the steady state solution.

– Selection of equations is determine by comparing the 
natural frequency o to .

– Coefficients are found by evaluating the equation and its 
first derivation at t = to

- and t = ∞s.

– The voltage across the capacitor is equal to the initial 
condition when t < to

• Using the relationships between current and voltage, the 
current through the capacitor and the voltages and 
currents for the inductor and resistor can be calculated.
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Step Response-Parallel RLC Network

• Objective of Lecture 

– Derive the equations that relate the voltages across 

a resistor, an inductor, and a capacitor in parallel as:

• the unit step function associated with voltage or current 

source changes from 0 to 1 or

• a switch connects a voltage or current source into the 

circuit.

– Describe the solution to the 2nd order equations 

when the condition is:

• Overdamped

• Critically Damped

• Underdamped
69

Parallel RLC Network

• With a current source switched into the circuit 

at t= to.

70

Boundary Conditions

• You must determine the initial condition of the 

inductor and capacitor at t < to and then find the 

final conditions at t = ∞s.

– Since the voltage source has a magnitude of 0V at t< to

• iL(to
-) = 0 A and v(to

-) = vC(to
-) = 0 V 

• vL(to
-) = 0 V and iC(to

-) = 0 A

– Once the steady state is reached after the voltage 

source has a magnitude of Vs at t > to, replace the 

capacitor with an open circuit and the inductor with a 

short circuit.

• iL(∞s) = Is and v(∞s) = vC(∞s) = 0 V 

• vL(∞s) = 0 V and iC(∞s) = 0 A

71

Selection of Parameter

• Initial Conditions

– iL(to
-) = 0 A and v(to

-) = vC(to
-) = 0 V 

– vL(to
-) = 0 V and iC(to

-) = 0 A

• Final Conditions

– iL(∞s) = Is and v(∞s) = vC(∞s) = 0 V

– vL(∞s) = 0 V and iC(∞s) = 0 A

• Since the current through the inductor is the 
only parameter that has a non-zero boundary 
condition, the first set of solutions will be for 
iL(t).

72
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Kirchhoff’s Current Law
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Set of Solutions when t > to

• Similar to the solutions for the natural response, 

there are three different solutions.  

• To determine which one to use, you need to 

calculate the natural angular frequency of the 

parallel RLC network and the term .

RC

LC
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1

1
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Transient Solutions when t > to

• Overdamped response

• Critically damped response

• Underdamped response

where
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Other Voltages and Currents

• Once the current through the inductor is known:
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Complete Solution when t > to

• Overdamped response

• Critically damped response

• Underdamped response
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Summary

• The set of solutions when t > to for the current through 
the inductor in a RLC network in parallel was obtained.

– The final condition for the current through the inductor is 
the steady state solution.

– Selection of equations is determine by comparing the 
natural frequency o to .

– Coefficients are found by evaluating the equation and its 
first derivation at t = to

- and t = ∞s.

– The current through the inductor is equal to the initial 
condition when t < to

• Using the relationships between current and voltage, the 
voltage across the inductor  and the voltages and 
currents for the capacitor and resistor can be calculated.
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Duality

• Objective of Lecture

– Introduce the concept of duality.

79

Parallelism Between Components

• Two circuits are said to be duals of one another if they are 

described by the same characterizing equations with the dual 

pairs interchanged.

Dual Pairs

Resistance (R) Conductance (G)

Inductance (L) Capacitance (C)

Voltage (v) Current (i)

Voltage Source Current Source

Node Mesh/Loop

Series Path Parallel Path

Open Circuit Short Circuit

KVL KCL

Thévenin Norton

80

VC1(t) = 5V[1-e–(t-10s)/t]

t = RC = 2s

VC1(t) = 5V[1-e–(t-10s)/2s]

81

IL1(t) = 5A[1-e–(t-10s)/t]

t = L1/R1 = L1G1

IL1(t) = 5A[1-e–(t-10s)/2s]

82

To Construct Dual Circuits

• Place a node at the center of each mesh of the 
circuit.

• Place a reference node (ground) outside of the 
circuit.

• Draw lines between nodes such that each line 
crosses an element.

• Replace the element by its dual pair.

• Determine the polarity of the voltage source and 
direction of the current source.
– A voltage source that produces a positive mesh current 

has as its dual a current source that forces current to 
flow from the reference ground to the node associated 
with that mesh. 

83

Example 05

• Circuit:

• Its dual:
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Summary

• The principle of duality means that the solution 

to one circuit can be applied to multiple other 

circuits that can be described using the same set 

of equations in which the variables have been 

interchanged.
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