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RC and RL Circuits

First Order Circuits
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Objectives of Lecture

• Explain the operation of a RC circuit in dc circuits
– As the capacitor stores energy when voltage is first 

applied to the circuit or the voltage applied across the 
capacitor is increased during the circuit operation.

– As the capacitor releases energy when voltage is 
removed from the circuit or the voltage applied across 
the capacitor is decreased during the circuit operation.

• Explain the operation of a RL circuit in dc circuit
– As the inductor stores energy when current begins to 

flow in the circuit or the current flowing through the 
inductor is increased during the circuit operation.

– As the inductor releases energy when current stops 
flowing in the circuit or the current flowing through the 
inductor is decreased during the circuit operation.
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Natural Response

• The behavior of the circuit with no external 

sources of excitation. 

– There is stored energy in the capacitor or inductor 

at time = 0 s.

– For t > 0 s, the stored energy is released

• Current flows through the circuit and voltages exist 

across components in the circuit as the stored energy is 

released.

• The stored energy will decays to zero as time approaches 

infinite, at which point the currents and voltages in the 

circuit become zero.
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RC Circuit

• Suppose there is some charge on a capacitor at 
time t = 0 s.  

– This charge could have been stored because a 
voltage or current source had been in the circuit at t
< 0 s, but was switched off at t = 0 s.

• We can use the equations relating voltage and 
current to determine how the charge on the 
capacitor is removed as a function of time.

– The charge flows from one plate of the capacitor 
through the resistor R to the other plate to 
neutralize the charge on the opposite plate of the 
capacitor.
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Equations for RC Circuit
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Equations for RC Circuit
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Since the voltages are equal and 

the currents have the opposite 

sign, the power that is dissipated 

by the resistor  is the power that is 

being released by the capacitor.
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The Key to Working with a Source-Free RC Circuit Is Finding:

• The initial voltage v(0) = V0 across the capacitor.

– Can be obtained by inserting a d.c. source to the circuit 

for a time much longer than  at least t = -5 and then 

removing it  at t = 0.

• Capacitor

– Open Circuit Voltage

• The time constant .

– In finding the time constant  = RC, R is often the 

Thevenin equivalent resistance at the terminals of the 

capacitor; 

• that is, we take out the capacitor C and find R = RTh at its 

terminals
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Time constant

• The natural response of a capacitive circuit refers to 

the behavior (in terms of voltages) of the circuit itself, 

with no external sources of excitation.

– The natural response depends on the nature of the circuit 

alone, with no external sources. 

• In fact, the circuit has a response only because of the energy initially 

stored in the capacitor.

• The voltage response of the RC circuit

– Time constant,  = RC 

• The time required for the 

voltage across the capacitor to 

decay by a factor of 1/e or 

36.8% of its initial value. 
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Equations for RL Circuits
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Equations for RL Circuit
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Since the voltages are equal and 

the currents have the opposite 

sign, the power that is dissipated 

by the resistor  is the power that is 

being released by the inductor.
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The Key to Working with a Source-Free RL Circuit Is Finding:

• The initial current i(0) = I0 through the inductor.

– Can be obtained by inserting a d.c. source to the circuit 

for a time much longer than  at least t = -5 and then 

removing it  at t = 0.

• Inductor

– Short Circuit Current

• The time constant .

– In finding the time constant  = L/R, R is often the 

Thevenin equivalent resistance at the terminals of the 

inductor; 

• that is, we take out the inductor L and find R = RTh at its 

terminals
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Time constant

• The natural response of an inductive circuit refers to 

the behavior (in terms of currents) of the circuit itself, 

with no external sources of excitation.

– The natural response depends on the nature of the circuit 

alone, with no external sources. 

• In fact, the circuit has a response only because of the energy initially 

stored in the inductor.

• The current response of the RL circuit

– Time constant,  =L/R

• The time required for the 

current in the inductor to decay 

by a factor of 1/e or 36.8% of 

its initial value. 
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Singularity Functions

• Singularity functions (also called switching 
functions) are very useful in circuit analysis. 

• They serve as good approximations to the 
switching signals that arise in circuits with 
switching operations. 

• They are helpful in the neat, compact 
description of some circuit phenomena, 

– especially the step response of RC or RL circuits

• Singularity functions are functions that either 
are discontinuous or have discontinuous 
derivatives.
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Unit Step Function

• The unit step function (u(t)) is 0 for negative values of 

t and 1 for positive values of t. 
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V0

v(t)

Unit Step Function

• Voltage source of V0u(t) and its equivalent circuit.

• Current source of I0u(t) and its equivalent circuit.
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Unit Impulse Function

• The derivative of the unit step function u(t) is 

the unit impulse function ((t))
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x(t) = 5(t+2) + 10(t) - 4(t-3)

Integration of Unit Functions

• To illustrate how the impulse function affects other 
functions, let us evaluate the integral

• This is a highly useful property of the impulse function 
known as the sampling or sifting property.
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Unit Ramp Function
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Relationships of singularity functions

• The three singularity functions (impulse, step, 

and ramp) are related by differentiation as

• or by integration as
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Transient responses of RC and RL circuits

• AKA a forced response to an independent 

source

• Capacitor and inductor store energy when 

there is: 

– a transition in a unit step function source, u(t-to)

– a voltage or current source is switched into the 

circuit.
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RC Circuit

IC = 0A when t < to

VC = 0V when t < to

Because I1 = 0A (replace it with an open circuit).

RC Circuit

• Find the final condition of the voltage across 

the capacitor.

– Replace C with an 

open circuit and 

determine the voltage 

across the terminal.

IC = 0A when t ~ ∞ s 

VC = VR = I1R when t ~ ∞ s 

RC Circuit

• In the time between to and t = ∞ s, the capacitor stores 

energy and currents flow through R and C.
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RL Circuit RL Circuit

• Initial condition is not important as the magnitude 

of the voltage source in the circuit is equal to 0V

when t ≤ to. 

– Since the voltage 

source has only been 

turned on at t = to, 

the circuit at t ≤ to is 

as shown on the left.  

• As the inductor has not stored any energy because no 

power source has been connected to the circuit as of 

yet, all voltages and currents are equal to zero.

RL Circuit

• So, the final condition of the inductor current 

needs to be calculated after the voltage source 

has switched on.

– Replace L with a short circuit and calculate IL(∞).

Final Condition

R

V
I

II

VV

R

RL

L

1

)(

0)(







RL Circuit

 /)(1

1

1

1)(

0

0

ott

L

L
L

R
L

e
R

V
tI

L

V
I

L

R

dt

dI

VRI
dt

dI








R

L


dt

dI
LV

RVII

VVV

L
L

RRL

RL







/

01

Complete Response

• Is equal to the natural response of the circuit 

plus the forced response

– Use superposition to determine the final equations 

for voltage across components and the currents 

flowing through them.

• Typically, it is assumed that the currents and 

voltages in a circuit have reached steady-state 

once 5 have passed after a change has been 

made to the value of a current or voltage source 

in the circuit.
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Example 01…

• Suppose there were two unit step function 

sources in the circuit.  

…Example 01…

• The solution for Vc would be the result of 

superposition where:

– I2 = 0A, I1 is left on

• The solution is a forced response since I1 turns on at t = 

t1

– I1 = 0A, I2 is left on

• The solution is a natural response since I2 turns off at t = 

t2

…Example 01…
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• If t1 < t2
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General Equations

• When a voltage or current source changes its 

magnitude at t = 0s in a simple RC or RL circuit.

– Equations for a simple RC circuit

– Equations for a simple RL circuit
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V(t) = 5V [1 - u(t)]

t < 0

VL = 0V

VR = 5V

IL = IR = 5mA
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Example 02…

t > 0

 = L/R = 10mH/1k = 10 ns

IL = IR = i(0)e-t/ = 5mA e-t/10ns 

VR = 1k IR = 5V e-t/10ns 

VL = L(dIL/dt) = -5V e-t/10ns 

Note VR + VL = 0 V
V(t) = 5V [1 - u(t)]
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…Example 02

V(t) = 5V [1 - u(t - 2ms)]
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Example 03… …Example 03…
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t < 2ms

…Example 03…

• t < 2ms

– C1 is an open.  

• The voltage across the capacitor is equal to the voltage 

across the 12k resistor.

VC = [12k /15k] 5V = 4V
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…Example 03…

42

t > 2ms
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…Example 03

t > 2ms

 = ReqC = 3k(2mF) = 6 ms

VC = VC(2ms)e-(t-2ms)/ = 4V e-(t-2ms)/6ms 

VR = VC

IC = C dVc/dt = 2mF(-4V/6ms) e-(t-2ms)/6ms

= -1.33 e-(t-2ms)/6ms mA 

IR = - IC = 1.33 e-(t-2ms)/6ms mA 

Note IR + IL = 0 mA
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V(t) = 6V [1 - u(t)]

Example 04…

IL(t)

…Example 04…

IL(t)

…Example 04…

t < 0s

VL = 0V

VR = 6V

IL = IR = 2mA

Therefore, 

Io = 2mA

Find the initial condition.

Io

…Example 04…

IL(t)

…Example 04

t > 0s

t = L/R = 10mH/3k/ = 

3.33ms

IL = IR =Ioe
-t/ = 2mA e-(t/3.33ms)

VR = 3k IR = 6V e-(t/3.33ms)

VL = L dIL/dt = -6V e-(t/3.33ms)

Note VR + VL = 0 V

IL(t)


