BLM1612 - Circuit Theory

Prof. Dr. Nizamettin AYDIN <u>naydin@yildiz.edu.tr</u> www.yildiz.edu.tr/~naydin

Linearity Superposition Thévenin's and Norton Theorems Mesh Analysis Maximum Power Transfer Theorem

Objectives of Lecture

- · Introduce the property of linearity
- Introduce the superposition principle
- Provide step-by-step instructions to apply superposition when calculating voltages and currents in a circuit that contains two or more power sources.
- Describe the differences between ideal and real voltage and current sources
 - Demonstrate how a real voltage source and real current source are equivalent so one source can be replaced by the other in a circuit.
- State Thévenin's and Norton Theorems.
 Demonstrate how Thévenin's and Norton theorems can be used to simplify a circuit to one that contains three components: a power source, equivalent resistor, and load.
- · Understand Maximum Power Transfer Theorem

Linearity

- Ohm's Law is a linear function. $V = I \times R$
- If the current is increased by a constant k, then the voltage increases correspondingly by k;
 k×I×R = k×V
- Example: DC Sweep of V1

Linearity

- The additivity property requires that the response to a sum of inputs is the sum of the responses to each input applied separately.
- If $x = x_1 + x_2$ $y = f(x) = f(x_1 + x_2) = f(x_1) + f(x_2)$
- then the system is linear.
- Using the voltage-current relationship of a resistor, if $V_1 = I_1 \times R$ and $V_2 = I_2 \times R$
- then applying $(I_1 + I_2)$ gives $V = (I_1 + I_2) \times R = I_1 \times R + I_2 \times R = V_1 + V_2$

Nonlinear Systems and Parameters

- In a linear resistive circuit power is P = IV
- Is power linear with respect to current and voltage?
- Power is nonlinear with respect to current and voltage.
 - As either voltage or current increase by a factor of a, P increases by a factor of a^2 .

 $\mathbf{P} = \mathbf{I}\mathbf{V} = \mathbf{I}^2\mathbf{R} = \mathbf{V}^2/\mathbf{R}$

Linear Components

- Resistors
- Inductors
- Capacitors
- · Independent voltage and current sources
- Certain dependent voltage and current sources that are linearly controlled

Nonlinear Components

- Diodes including Light Emitting Diodes
- Transistors
- SCRs
- Magnetic switches
- Nonlinearily controlled dependent voltage and current sources

Usage

• Separating the contributions of the DC and AC independent sources.

Example:

- To determine the performance of an amplifier, we calculate the DC voltages and currents to establish the bias point.
- The AC signal is usually what will be amplified.
- A generic amplifier has a constant DC operating point, but the AC signal's amplitude and frequency will vary depending on the application.

Steps

- 1. Turn off all independent sources except one. Voltage sources should be replaced with short circuits Current sources should be replaced with open circuits
- 2. Keep all dependent sources on
- 3. Solve for the voltages and currents in the new circuit.
- 4. Turn off the active independent source and turn on
- one of the other independent sources.5. Repeat Step 3.
- 6. Continue until you have turned on each of the independent sources in the original circuit.
- 7. To find the total voltage across each component and the total current flowing, add the contributions from each of the voltages and currents found in Step 3.

A Requirement for Superposition

• Once you select a direction for current to flow through a component and the direction of the + /- signs for the voltage across a component, you <u>must</u> use the same directions when calculating these values in all of the subsequent circuits.

Example 6						
Currents and Voltages in Original Circuit						
			#2	#2		
	-	#1	#2	#3	Total	
	I_1	+42.9mA	+0.286A	0A	+0.329A	
	I_2	0	-1A	2A	+1A	
	I_3	+42.9mA	-0.714A	0A	-0.671A	
	V_1	+2.14V	+14.3V	0 V	16.4V	
	V_2	0 V	-30V	+ 60V	+30.0V	
	V ₃	0.857V	-14.3V	0 V	-13.4V	
						-

Source Transformation

- We have noticed that series-parallel combination and wye-delta transformation help simplify circuits.
- Source transformation is another tool for simplifying circuits.
- Basic to these tools is the concept of equivalence.
 - an equivalent circuit is one whose v-i characteristics are identical with the original circuit.

Source Transformation

• A source transformation is the process of replacing a voltage source v_s in series with a resistor *R* by a current source i_s in parallel with a resistor *R*, or vice versa.

Electronic Response

- For a real voltage source, what is the voltage across the load resistor when $Rs = R_L$?
- For a real current source, what is the current through the load resistor when Rs = RL?

Equivalence

- An equivalent circuit is one in which the *i*- v characteristics are identical to that of the original circuit.
 - The magnitude and sign of the voltage and current at a particular measurement point are the same in the two circuits.

• Current and power that the ideal current source needs to generate in order to supply the same current and voltage to a load increases as R_s decreases.

- Note: Rs can not be equal to 0Ω .

• The power dissipated by R_L is 50% of the power generated by the ideal current source - when $R_S = R_L$.

...Example 11

- Voltage and power that the ideal voltage source needs to supply to the circuit increases as R_s increases.
 Note: Rs can not be equal to ∞ Ω.
- The power dissipated by R_L is 50% of the power generated by the ideal voltage source - when $R_S = R_L$.

Summary

- An equivalent circuit is a circuit where the voltage across and the current flowing through a load R_1 are identical.
 - As the shunt resistor in a real current source decreases in magnitude, the current produced by the ideal current source must increase.
 - As the series resistor in a real voltage source increases in magnitude, the voltage produced by the ideal voltage source must increase.
 - The power dissipated by $R_{\rm L}$ is 50% of the power produced by the ideal source when $R_{\rm L}=R_{\rm S}.$

