BLM1612 - Circuit Theory

Prof. Dr. Nizamettin AYDIN
naydin@yildiz.edu.tr

Units with Prefixes and Significant Figures
Charge, Electric Current, Voltage, Power, and Energy
Ohm's Law

Objectives of the Lecture

- Introduce the electrical quantities or variables that are used in the field of Electrical and Computer Engineering.
- Present the prefixes to the units associated with the variables that will be used frequently in this course.
- Review significant figures.
- Explain how you should present the results of your calculations.

Objectives of the Lecture

- Discuss the mathematical relationships between charge, current, voltage, power, and energy.
- Explain the differences between positive and negative power using passive sign convention.
- Describe the application of the conservation of energy in electrical circuits.
- Introduce active and passive circuit elements.
- Describe a basic electric circuit, which may be drawn as a circuit schematic or constructed with actual components.

Units of Measurement

- As engineers, we deal with measurable quantities.
- Measurement must be communicated in a standard language.
- The International System of Units (SI),
- adopted by the General Conference on Weights and Measures in 1960.
- In SI, there are seven principal units from which the units of all other physical quantities can be derived.

Units of Measurement

- Six basic SI units and one derived unit.

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	A
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Charge	coulomb	C

More Units

Name	Symbol	Quantity	Expressed in terms of other SI units	Expressed in terms of SI base units
hertz	Hz	frequency		s^{-1}
newton	N	force		$\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}$
joule	J	energy, work	$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}$
watt	w	power	J/s	$\mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-3}$
coulomb	c	electric charge		S.A
volt	v	voltage	W/A or J/C	$\mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-1}$
ohm	Ω	electric resistance	V/A	$\mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~A}^{-2}$
farad	F	electric capacitance	c/v	$\mathrm{kg}^{-1} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~s}^{4} \cdot \mathrm{~A}^{2}$
henry	H	inductance	Wb/A	$\mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~A}^{-2}$
weber	Wb	magnetic flux	V.s	$\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~A}^{-1}$

- joule: fundamental unit of work or energy
- $1 \mathrm{~J}=2.78 \times 10^{-7} \mathrm{~kW} \cdot \mathrm{~h}=2.39 \times 10^{-4} \mathrm{kcal}$
- Since the joule is also a watt-second and the common unit for electricity sales to homes is the kWh (kilowatt-hour), a kWh is thus 1000 (kilo) $\times 3600$ seconds $=3.6 \mathrm{MJ}$ (megajoules) .

Units of Measurement

- One great advantage of the SI unit is that it uses prefixes based on the power of 10 to relate larger and smaller units to the basic unit.
- For example, the following are expressions of the same distance in meters (m):
- 600000000 mm
- 600000 m
- 600 km

The SI prefixes.

Multiplier	Prefix	Symbol
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

Units of Measurement

- The numerical value substituted into an equation must have the unit of measurement specified by the equation.
- For example,
- consider the equation for the velocity $v=d / t$.
- v: velocity, d : distantance, $t:$ time
- Assume that the following data are obtained for a moving object: $d=4000 \mathrm{~m}, t=1 \mathrm{~min}$ and v is desired in km per hour.
- Incorrect answer:
- $v=4000 / 1=4000 \mathrm{kmh}$
- Correct answer:
- $v=4000 \times 10^{-3} /(1 / 60)=240 \mathrm{kmh}$

Units of Measurement

- Before substituting numerical values into an equation, be absolutely sure of the following:
- Each quantity has the proper unit of measurement as defined by the equation.
- The proper magnitude of each quantity as determined by the defining equation is substituted.
- Each quantity is in the same system of units (or as defined by the equation).
- The magnitude of the result is of a reasonable nature when compared to the level of the substituted quantities.
- The proper unit of measurement is applied to the result.

Systems of Units

- Comparison of the English and metric systems of units.

English	Metric		
	mKs	cgs	st
Length: Yard (yd) (0.914 m)	Meter (m) (39.37 in .) (100 cm)	Centimeter (cmin) ($2.54 \mathrm{~cm}=1 \mathrm{in}$.)	Meter (m)
Mass: Slug (14.6 kg)	Kilogram (kg) $(1000 \mathrm{~g})$	Grum (g)	Kilogram (kg)
Fonce: Pound (lb) (4.45 N)	Newlon (N) (100,000 dynes)	Dyne	Newton (N)
Temperature: $\begin{aligned} & \text { Fahrenheit (F) } \\ & \left(=\frac{9}{5} \mathrm{C}+32\right) \end{aligned}$	Celsius or $\begin{aligned} & \text { Centigrade (} \left.{ }^{\circ} \mathrm{C}\right) \\ & \left(=\frac{5}{9}(\mathrm{~F}-32)\right) \end{aligned}$	Centignde (C)	$\begin{aligned} & \text { Kelvin }(\mathrm{K}) \\ & \mathrm{K}=27.15+{ }^{\circ} \mathrm{C} \end{aligned}$
Energy: Foos-pound ($\mathrm{n}-\mathrm{-lb}$) (1.356 joules)	Newton-meter ($\mathrm{N} \cdot \mathrm{m}$) or jowle (d) (0.7376 $8-1 \mathrm{lb}$)	Dyne-centimeter or erg (1) joule $=10^{7}$ ergs)	Joule (J)
Time: Scoond (s)	Secons (s)	Second (s)	Second (s)

Comparison of units of the various systems of units

Standards of some units

- The meter is defined with reference to the speed of light in a vacuum, which is $\mathbf{2 9 9 7 9 2 4 5 8} \mathbf{~ m} / \mathrm{s}$.
- It was originally defined in 1790 to be $1 / \mathbf{1 0 0 0 0 0 0 0}$ the distance between the equator and either pole at sea level, a length preserved on a platinum-iridium bar at the International Bureau of Weights and Measures at Sèvres, France.
- The kilogram is defined as a mass equal to 1000 times the mass of one cubic centimeter of pure water at $4^{\circ} \mathrm{C}$.
- This standard is preserved in the form of a platinumiridium cylinder in Sèvres.

Standards of some units

- The second is redefined in 1967 as 9192631770 periods of the electromagnetic radiation emitted by a particular transition of cesium atom.
- It was originally defined as $1 / 86400$ of the mean solar day.
- However, Earth's rotation is slowing down by almost 1 second every 10 years.

Significant Figures, Accuracy, Round off

- Two types of numbers:
- Exact
- For example 12 apples
- Approximate
- Any reading obtained in the laboratory should be considered approximate
- The precision of a reading can be determined by the number of significant figures (digits) present.
- Accuracy refers to the closeness of a measured value to a standard or known value
- For approximate numbers, there is often a need to round off the result
- that is, you must decide on the appropriate level of accuracy and alter the result accordingly.
- For example, $3.186 \cong 3.19 \cong 3.2$

Powers of ten

- To express very large and very small numbers
- The notation used to represent numbers that are integer powers of ten is as follows:

$$
\begin{aligned}
& 1=10^{0} \quad 1 / 10=0.1=10^{-1} \\
& 10=10^{1} \quad 1 / 100=0.01=10^{-2} \\
& 100=10^{2} \quad 1 / 1000=0.001=10^{-3} \\
& 1000=10^{3} \quad 1 / 10,000=0.0001=10^{-4}
\end{aligned}
$$

Powers of ten

- Some important mathematical equations and relationships pertaining to powers of ten:


```
(10r)(1\mp@subsup{0}{}{m})=(10\mp@subsup{)}{}{(n+m)}
```

```
\frac{10}{n}
```

$\left(10^{n}\right)^{m}=10^{m}$

Scientific notation vs. Engineering notation

- Scientific notation and engineering notation make use of powers of ten, with restrictions on the mantissa (multiplier) or scale factor (power of ten).
- Scientific notation requires that the decimal point appear directly after the first digit greater than or equal to 1 but less than 10 .
- Engineering notation specifies that all powers of ten must be multiples of 3 , and the mantissa must be greater than or equal to 1 but less than 1000 .
- Power
$\left(A \times 10^{n}\right)^{m}=A^{m} \times 10^{n m}$

Scientific notation vs. Engineering notation

- Scientific notation example:
$\frac{1}{3}=3.33333333333 \mathrm{E}-1 \quad \frac{1}{16}=6.25 \mathrm{E}-2 \quad \frac{2300}{2}=1.15 \mathrm{E} 3$
$\frac{1}{3}=3.33 \mathrm{E}-1 \quad \frac{1}{16}=6.25 \mathrm{E}-2 \quad \frac{2300}{2}=1.15 \mathrm{E} 3$
- Engineering notation example:
$\frac{1}{3}=333.333333333 \mathrm{E}-3 \quad \frac{1}{16}=62.5 \mathrm{E}-3 \quad \frac{2300}{2}=1.15 \mathrm{E} 3$
$\frac{1}{3}=333.33 \mathrm{E}-3 \quad \frac{1}{16}=62.50 \mathrm{E}-3 \quad \frac{2300}{2}=1.15 \mathrm{E} 3$

Electricity

- Electricity is a result from the flow of electrons.
$\bigcirc=$ electron

- Electricity flows in the opposite direction of electron flow.

Example-01

- 1.2 kWh toaster takes roughly 4 minutes to heat four slices of bread.
- Find the cost of operating the toaster once per day for 1 month (30 days).
- Assume energy costs $0.5 \mathrm{TL} / \mathrm{kWh}$.
- Answer..
$-(1.2 / 60) \times 4 \times 30 \times 0.5=1.2 \mathrm{TL}$
- The clock speed of your computer is 2.6 GHz .
- This clock speed is equal to...

$-\ldots \ldots \ldots \ldots \ldots . \mathrm{MHz}$	$-2.6 \times 10^{3} \mathrm{MHz}$
$-\ldots \ldots \ldots \ldots \ldots \mathrm{KHz}$	$-2.6 \times 10^{6} \mathrm{KHz}$
$-\ldots \ldots \ldots \ldots . \mathrm{HZ}$	$-2.6 \times 10^{9} \mathrm{HZ}$

Electric Current vs. Electron Current

Electric current

- Electricity is similar to water flow.
- Water flows from high level to low level.
- Electricity flows from high voltage to low voltage.

Electric Potential

- Which water drop has more impact force at the ground?

- Potential Energy-Height

- Kinetic Energy-Velocity

Electric potential can be compared with the height of the water drop from the reference ground

Ground: Reference Point

- Normally, we measure height compared to the sea level.
- Also, electric potential at a point can be measured compared to the electric potential at the ground.
- Electric potential, or voltage has a unit volt(V).
- Ground always has 0 volts.

Voltage

- Voltage is a difference of electric potential between 2 points

- Compare to the height of 2 water drops

Circuit Components

- Active elements
- Independent power
sources
- voltage, current
- Dependent power sources - voltage, current
- Passive Elements
- Resistors
- Capacitors
- Inductors
- Measurement Devices
- Ampermeters:
- measure current
- Voltmeters:
- measure voltage
- Ground
- reference point
- Electric Wire
- Switches
- Protective devices
- Fuse

Independent Power Sources

- Independent voltage source outputs a voltage, either dc or time varying, to the circuit no matter how much current is required.
- Independent current source outputs a dc or ac current to the circuit no matter how much voltage is required.

Independent Power Sources

- Current can flow in and out of an independent voltage source, but the polarity of the voltage is determined by the voltage source.
- There is always a voltage drop across the independent current source and the direction of positive current is determined by the current source.

Example-02...

- 1 V is dropped across some element (in red) and the wires to that element are
 connected directly to the independent current source.

- This means is that the independent current source happens to be supplying power to the independent voltage source, which is dissipating power.
- This happens when you are charging a battery, which is considered to be an independent voltage source.

Dependent Power Sources

- Dependent V/C source
- source whose V/C is dependent upon or controlled by some V/C at another point

(a)

(b)

(c)

(d)
- (a) current-controlled current source (CCCS)
- (b) voltage-controlled current source (VCCS)
- (c) voltage-controlled voltage source (VCVS)
- (d) current-controlled voltage source (CCVS)

Dependent Power Sources

- useful for analyzing (simplifying) the behavior of complicated circuit elements (e.g. transistors, operational amplifiers)

- Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

Example Dependent Sources

- If $v_{2}=3 \mathrm{~V}$, find the voltage v_{L} in the circuit below.
- Assume that all points along a wire that do not cross a circuit element have the same voltage.

$v_{2}=3 \mathrm{~V}$
$v_{\mathrm{L}}=5 \times v_{2}=5 \times 3=15 \mathrm{~V}$

Example-03

- Determine the power absorbed by each element in the circuit

Passive Elements

- The magnitude of the voltage drop and current flowing through passive devices depends on the voltage and current sources that are present and/or recently attached to the circuit.
- These components can dissipate power immediately or store power temporarily and later release the stored power back into the circuit.

Passive Components		
Component	Symbol	Basic Measure (Unit)
Resistor -1iis	V	Ohm (Ω)
Inductor	\curvearrowright	Henry (H)
Capacito	$-H$	Farad (F)

Switches

- Switches are used to control whether a complete path is formed from an end of at least one power supply to the other end of the same power supply (closed circuit).
- Current will only flow when there is a closed circuit.
- Switches can be mechanical, as are used on light switches in your home, or are electronic switches,

Protective Devices

- Circuits that have carry dangerous levels of current and voltages are required to include fuses, circuit breakers, or ground fault detectors by federal and state electrical safety codes.
- These protective devices are designed to create an open circuit, or a break in the round trip path in the circuit, when a malfunction of a component or other abnormal condition occurs. which are semiconductor based.
- Electronic switches are used in TV sets, for example, to turn on the TV when an infrared optical signal from the remote control is detected.
- The speed of response of the protective device, fastacting or time-delay (slow-blow) is determine by the engineer, based upon the expected type of malfunction.

Wires

- Wires are assumed to have zero resistance; i.e., they are ideal conductors or short circuits.
- The current carrying capability of a wire is determined by its diameter or cross-sectional area.
AWG, American wire gauge, is the standard followed in the US and is used to rate how much current a wire can safely carry.
- The larger the gauge wire, the smaller its current carrying capability is.
- The AWG standard includes copper, aluminum and other wire materials.
- Typical household copper wiring is AWG number 12 or 14 .
- Telephone wire is usually 22,24 , or 26 .
- The higher the gauge number, the smaller the diameter and the thinner the wire.

AWG to square $\mathbf{m m}$ cross sectional area

American Wire Gauge (\#AWG)	Diameter	Diameter (mm)	Cross Sectional Area (mm ${ }^{2}$)	American Wire Gauge (\#AWG)	Diameter (inches)	Diameter (mm)	Cross Sectional Area $\left(\mathrm{mm}^{2}\right)$
0000 (4/0)	0.460	11.7	107	11	0.0907	2.30	4.17
000 (3/0)	0.410	10.4	85.0	12	0.0808	2.05	3.31
00 (2/0)	0.365	9.27	67.4	13	0.0720	1.83	2.63
0 (1/0)	0.325	8.25	53.5	14	0.0641	1.63	2.08
1	0.289	7.35	42.4	15	0.0571	1.45	1.65
2	0.258	6.54	33.6	16	0.0508	1.29	1.31
3	0.229	5.83	26.7	17	0.0453	1.15	1.04
4	0.204	5.19	21.1	19	0.0359	0.91	0.65
5	0.182	4.62	16.8	20	0.0320	0.81	0.52
6	0.162	4.11	13.3	21	0.0285	0.72	0.41
7	0.144	3.67	10.6	22	0.0254	0.65	0.33
		3.26	8.36	23	0.0226	0.57	0.26
8	0.129	3.26	8.36	24	0.0201	0.51	0.20
9	0.114	2.91	6.63	25	0.0179	0.45	0.16
10	0.102	2.59	5.26	26	0.0159	0.40	0.13

Ground

- Earth ground is a ground that is physically connected to the earth, itself.
- All homes have an earth ground
- a wire connected to a metal pipe that is driven into the ground immediately next to the house.
- Wires that have a green jacket or are bare copper are connected to this pipe.
- Reference ground or common is used in a circuit to indicate a point where the voltage in the circuit is equal to zero. \qquad

General Rules

- All points on a same electric wire have the same voltage.
- A voltage source always have voltage difference of its pins equal to its value.
- A current source always have current pass through it equal to its value.
- Ground always has zero voltage. (0 volts)

Electric Flow Rule

- Electric current flows from high voltage to low voltage when there is a path.
- Electric current can freely pass through electric wire.
- Electric current can flow through a resistor with the amount according to Ohm's law.
- Electric current can flow through a voltage source with the amount depended on other components in the circuit.
- Electric current can flow pass a current source according to its value.

Charge

- is the fundamental property of matter that causes it to experience a force when placed in electro magnetic field and refers to electrons \& protons
- The absolute value of the charge on an electron is $1.6 \times 10^{-19} \mathrm{C}$
- The symbol used is Q or q
- Uppercase is used to denote a steady-state or constant value
- Lowercase is used to denote an instantaneous value or time-varying quantity

Current

- The movement of charge is called a current

- The mechanism by which electrical energy is transferred
- Send power from generation point to consumption point
- Send signals from source to sink

Current

- Symbol used is i or I
- Current, i, is measured as charge moved per unit time through an element.

$$
i=\frac{d q}{d t} \quad Q=\int_{t_{1}}^{t_{2}} i d t
$$

- Amount of charge that has passed a given point:

$$
q(t)=\int_{t_{0}}^{t} i(\tau) d \tau+q\left(t_{0}\right)
$$

Example-04

- The charge entering a certain element is shown in below Figure.
$q(t)(\mathrm{nC}) \uparrow$
- Find the current at:

(a) $t=1 \mathrm{~ms}$
(b) $t=6 \mathrm{~ms}$
(c) $t=10 \mathrm{~ms}$

$$
i=\frac{d q}{d t}
$$

- The slope is defined as the ratio of the vertical change between two points, to the horizontal change between the same two points.

Example-05

- The charge flowing in a wire is plotted in below Figure.
- Sketch the corresponding current.

DC vs. AC

- DC (or dc) is the acronym for direct current.
- The current remains constant with time.
- Uppercase variables are used when calculating dc values.
- AC (or ac) is the acronym for alternating current.
- Specifically, AC current varies sinusoidally with time and the average value of the current over one period of the sinusoid is zero.
- Lowercase variables are used when calculating ac values
- Other time-varying currents exist, but there isn't an acronym defined for them.

Voltage (Potential Difference)

- The electromotive force (emf) that causes charge to move.
- 1 Volt = 1 Joule/ 1 Coulomb

$$
\mathrm{v}=\frac{d w}{d q}
$$

Power

- The change in energy as a function of time is power, which is measured in watts (W).

$$
p=\frac{d w}{d t}=\frac{d w_{i}}{d q^{\prime}} \frac{d q^{\prime}}{d t}=\mathrm{v} i
$$

Energy

- Energy is the capacity to do work.

$$
w=\int_{t_{1}}^{t_{2}} p d t=\int_{t_{1}}^{t_{2}} \mathrm{v} i d t
$$

- Units for energy are $\mathrm{kW}-\mathrm{hr}$, which is what the electric company measures on your electric meter.
$1 \mathrm{~kW}-\mathrm{hr}=3.6 \mathrm{MJ}$.

Positive vs. Negative Power

- Power consumed/dissipated by a component is positive power

$$
\mathrm{P}=+1 \mathrm{~W}
$$

Passive Sign Convention

- Generated power has a negative sign

$$
P=-1 W
$$

Example-07

- There are 4 electrical components in the circuit shown to the right.
- Component \#1 is generating 2 W of power and supplying this power to the circuit.
- Components \#2 and \#3 are consuming power.
- Component \#2 is dissipating 3 W of
 power while Component $\# 3$ is dissipating 5 W of power.
- Component \#4 must be generating 6 W of power in order to maintain the Conservation of Energy.
$\sum p=p_{\text {Componentu1 }}+p_{\text {Componenti\# } 2}+p_{\text {Componenti4 } 3}+p_{\text {Componentu4 }}=0$
$p_{\text {Component|t } 4}=-\left(p_{\text {Component\#1 }}+p_{\text {Componentit } 2}+p_{\text {Componennt\#3 }}\right)=-(-2 \mathrm{~W}+3 \mathrm{~W}+5 \mathrm{~W})=-6 \mathrm{~W}$

Ohm's Law

- first discussed by Georg Simon Ohm (German physicist) in a pamphlet describing voltage \& current measurements

$$
V=I \cdot R \quad v=i \cdot r
$$

- the voltage across a conducting material is linearly proportional to the current flowing through that material
- constant of proportionality $=$ the resistance of the material
- unit of resistance $=\mathbf{o h m}$
- $1 \Omega=1 \mathrm{~V} / \mathrm{A}$

Resistors \& Tolerance

- Real resistors are manufactured within a specific tolerance (5\%, 10\%, 20\%).

- The first two bands represent the first and second digits, respectively.
- They are the actual first two numbers that define the numerical value of the resistor.
- The third band determines the power-of-ten multiplier for the first two digits
- The fourth band is the manufacturer's tolerance, which is an indication of the precision by which the resistor was made.

Resistors \& Tolerance

- Find the value of the following resistor -IIID-
- Solution:
- Reading from the band closest to the left edge, we find that the first two colors of brown and red represent the numbers 1 and 2 , respectively.
- The third band is orange, representing the number 3 for the power of the multiplier as follows:

$$
12 \times 10^{3} \Omega=12 \mathrm{k} \Omega
$$

- Now for the fourth band of gold, representing a tolerance of 5%
- Given a 50Ω resistor with a tolerance of 10%, what is the minimum and maximum voltage across the resistor when a current of exactly 2 mA flows through it?

RESISTANCE: CIRCULAR WIRES

- The resistance of any material is due primarily to four factors:

- Cross-sectional area
- Temperature of the material

- the higher the resistivity, the greater the resistance of a conductor
- the longer the conductor, the greater the resistance
- the greater the area of a conductor, the less the resistance

Conductance \& Open/Short Circuits

- For a linear resistor, the ratio of current to voltage is also a constant

$$
\frac{i}{v}=\frac{1}{R}=G \quad \begin{aligned}
& - \text { where } G \text { is called the conductance } \\
& \\
& - \text { units }=\text { siemens }(\mathrm{S}), 1 \mathrm{~S}=1 \mathrm{~A} / \mathrm{V}=\Omega^{-1}
\end{aligned}
$$

- open circuit: $R=\infty$, and $i=0$ for any voltage across the open terminals
- short circuit: $R=0$, and $v=0$ for any current through the short
- For all of our circuits, wires are assumed to be perfect short circuits.
- i.e. since $v=i \times R$ and wires have $R=0$, all neighboring points along a wire have the same voltage.

Electric Current

Every point in the circuit has current $=1 \mathrm{~A}$ 76

Ground

Passive Sign Convention

Absorb power: Power has a sign +

Generate power: Power has a sign -

Example-08

DC source generates power $=10 \mathrm{~V} *-2.5 \mathrm{~mA}=-25 \mathrm{~mW}$
Resistor absorbs power $=10 \mathrm{~V} * 2.5 \mathrm{~mA}=25 \mathrm{~mW}$

Note: Resistors always absorb power but DC source can either generate or absorb power

Direction of Voltage \& Current on Resistors

- Resistor always absorb power
- Therefore, it always have current flow through it from high voltage pin to low voltage pin.

