BLM1612 - Circuit Theory

Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr

Units with Prefixes and Significant Figures Charge, Electric Current, Voltage, Power, and Energy Ohm's Law

Objectives of the Lecture

- Introduce the electrical quantities or variables that are used in the field of Electrical and Computer Engineering.
- Present the prefixes to the units associated with the variables that will be used frequently in this course.
- Review significant figures.
- Explain how you should present the results of your calculations.

Objectives of the Lecture

- Discuss the mathematical relationships between charge, current, voltage, power, and energy.
- Explain the differences between positive and negative power using passive sign convention.
- Describe the application of the conservation of energy in electrical circuits.
- Introduce active and passive circuit elements.
- Describe a basic electric circuit, which may be drawn as a circuit schematic or constructed with actual components.

Units of Measurement

- As engineers, we deal with measurable quantities.
- Measurement must be communicated in a standard language.
- The International System of Units (SI),
 adopted by the General Conference on Weights and Measures in 1960.
- In SI, there are seven principal units from which the units of all other physical quantities can be derived.

Units of Measurement

• Six basic SI units and one derived unit.

Quantity	Basic unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Electric current	ampere	А
Thermodynamic temperature	kelvin	K
Luminous intensity	candela	cd
Charge	coulomb	С

More Units

Name	Symbol	Quantity	Expressed in terms of other SI units	Expressed in terms of S base units
hertz	Hz	frequency		s ⁻¹
newton	N	force		kg·m·s ⁻²
joule	J	energy, work	N∙m	kg·m²·s⁻²
watt	w	power	J/s	kg·m ² ·s ^{−3}
coulomb	с	electric charge		s∙A
volt	V	voltage	W/A or J/C	kg·m ² ·s ⁻³ ·A ⁻¹
ohm	Ω	electric resistance	V/A	kg·m ² ·s ⁻³ ·A ⁻²
farad	F	electric capacitance	C/V	kg ⁻¹ ·m ⁻² ·s ⁴ ·A ²
henry	н	inductance	Wb/A	kg·m ² ·s ⁻² ·A ⁻²
weber	Wb	magnetic flux	V∙s	kg·m ² ·s ⁻² ·A ⁻¹

- $1 \text{ J} = 2.78 \times 10^{-7} \text{ kW} \cdot \text{h} = 2.39 \times 10^{-4} \text{ kcal}$
- Since the **joule** is also a **watt-second** and the common unit for electricity sales to homes is the kWh (kilowatt-hour), a kWh is thus 1000 (kilo) \times 3600 seconds = 3.6 MJ (megajoules).

Units of Measurement

 One great advantage of 	The SI prefixes.		
the SI unit is that it uses	Multiplier	Prefix	Symbol
prefixes based on the	1018	exa	Е
power of 10 to relate	1015	peta	Р
larger and smaller units to	10 ¹²	tera	Т
1 1 sis south	109	giga	G
the basic unit.	10 ⁶	mega	M
· For avample, the	10 ³	kilo	k
· For example, the	10^{2}	hecto	h
following are expressions	10	deka	da
of the same distance in	10-1	deci	d
of the same distance in	10^{-2}	centi	с
meters (m):	10^{-3}	milli	m
600 000 000 mm	10-6	micro	μ
– 000 000 000 mm	10-9	nano	n
– 600 000 m	10^{-12}	pico	р
C00 lam	10^{-15}	femto	f
-600 km	10^{-18}	atto	а

Units of Measurement

- The numerical value substituted into an equation must have the unit of measurement specified by the equation.
- For example,
 - consider the equation for the velocity v = d / t. • v: velocity, d: distantance, t: time
 - Assume that the following data are obtained for a moving object: d = 4000 m, t = 1 min and v is desired in km per hour.
 - Incorrect answer:
 - v = 4000 / 1 = 4000 kmh
 - Correct answer:
 - $v = 4000 \times 10^{-3} / (1/60) = 240$ kmh

Units of Measurement

- Before substituting numerical values into an equation, be absolutely sure of the following:
 - Each quantity has the proper unit of measurement as defined by the equation.
 - The proper magnitude of each quantity as determined by the defining equation is substituted.
 - Each quantity is in the same system of units (or as defined by the equation).
 - The magnitude of the result is of a reasonable nature when compared to the level of the substituted quantities.
 - The proper unit of measurement is applied to the result.

Systems of Units

· Comparison of the English and metric systems of units.

English	Metric		
	MKS	CGS	SI
Length:	Meter (m)	Centimeter (cm)	Meter (m)
Yard (vd)	(39.37 in.)	(2.54 cm = 1 in)	
(0.914 m)	(100 cm)		
Mass:			
Slug	Kilogram (kg)	Gram (g)	Kilogram (kg)
(14.6 kg)	(1000 g)		
Force:			
Pound (lb)	Newton (N)	Dyne	Newton (N)
(4.45 N)	(100,000 dynes)		
Temperature:			
Fahrenheit (°F)	Celsius or	Centigrade (°C)	Kelvin (K)
$\left(=\frac{9}{2}\circ C + 32\right)$	Centigrade (°C)		K = 273.15 + °C
(5)	$\left(=\frac{5}{9}(^{\circ}F - 32)\right)$		
Energy:			
Foot-pound (ft-lb)	Newton-meter (N•m)	Dyne-centimeter or erg	Joule (J)
(1.356 joules)	or joule (J) (0.7376 ft-lb)	$(1 \text{ joule} = 10^7 \text{ ergs})$	
Time:			
Second (s)	Second (s)	Second (s)	Second (s)

- the International Bureau of Weights and Measures at Sèvres, France.
 The kilogram is defined as a mass equal to 1000
- The kilogram is defined as a mass equal to 1000 times the mass of one cubic centimeter of pure water at 4°C.
 - This standard is preserved in the form of a platinumiridium cylinder in Sèvres.

Standards of some units

- The second is redefined in 1967 as 9**192**631**770** periods of the electromagnetic radiation emitted by a particular transition of cesium atom.
 - It was originally defined as 1/86400 of the mean solar day.
 - However, Earth's rotation is slowing down by almost 1 second every 10 years.

Significant Figures, Accuracy, Round off

- Two types of numbers:

 Exact
 For example 12 apples

 Approximate

 Any reading obtained in the laboratory should be considered approximate

 The precision of a reading can be determined by the number of significant figures (digits) present.
 Accuracy refers to the closeness of a measured value to a standard or known value
- For approximate numbers, there is often a need to round off the result
 - that is, you must decide on the appropriate level of accuracy and alter the result accordingly.
 For example, 3.186 ≅ 3.19 ≅ 3.2

- Powers of ten
- To express very large and very small numbers
- The notation used to represent numbers that are integer powers of ten is as follows:
 - $1 = 10^{0} 1/10 = 0.1 = 10^{-1}$ $10 = 10^{1} 1/100 = 0.01 = 10^{-2}$ $100 = 10^{2} 1/1000 = 0.001 = 10^{-3}$ $1000 = 10^{3} 1/10,000 = 0.0001 = 10^{-4}$

Scientific notation vs. Engineering notation

- Scientific notation example:
 - $\frac{1}{3} = 3.333333333333 = 1 \qquad \frac{1}{16} = 6.25E 2 \qquad \frac{2300}{2} = 1.15E3$
 - $\frac{1}{3} = 3.33E 1$ $\frac{1}{16} = 6.25E 2$ $\frac{2300}{2} = 1.15E3$
- Engineering notation example: $\frac{1}{3} = 333.333333332 - 3$ $\frac{1}{16} = 62.5E - 3$ $\frac{2300}{2} = 1.15E3$

$$\frac{1}{3} = 333.33E - 3$$
 $\frac{1}{16} = 62.50E - 3$ $\frac{2500}{2} = 1.15E$

Measurement of Electricity

• Imagine the water power at the outlet

Ground: Reference Point

- Normally, we measure height compared to the sea level.
- Also, electric potential at a point can be measured compared to the electric potential at the ground.
- Electric potential, or voltage has a unit volt(V).
- Ground always has 0 volts.

Circuit Components

- Active elements
 Independent power
 - sources
 - Dependent power sources
 - voltage, current
- Passive Elements
 - Resistors
 - Capacitors
 - Inductors

- Measurement Devices
 Ampermeters:
 - measure current
 Voltmeters:
- measure voltageGround
- reference point
- Electric Wire
- Switches
- Protective devices - Fuse

Independent Power Sources

- Independent voltage source outputs a voltage, either dc or time varying, to the circuit no matter how much current is required.
- Independent current source outputs a dc or ac current to the circuit no matter how much voltage is required.

Independent Power Sources

- Current can flow in and out of an independent voltage source, but the polarity of the voltage is determined by the voltage source.
- There is always a voltage drop across the independent current source and the direction of positive current is determined by the current source.

...Example-02...

3 A

1V

1V

- This means that 1V is also dropped across the independent current source. Therefore, the current source is generated 1 V(3 A) = 3 W 3A of power.
- Passive sign convention: When current leaves the + side of a voltage drop across the independent current source, the power associated with the current source is: p = -3 A(1 V) = -3 W

...Example-02 ...Example-02 . Suppose the red element was an independent voltage source. . This means is that the independent current source happens to be supplying power to the independent

voltage source, which is dissipating power.This happens when you are charging a battery, which is considered to be an independent voltage source.

Dependent Power Sources

Example Dependent Sources

- If $v_2 = 3$ V, find the voltage v_L in the circuit below.
 - Assume that all points along a wire that do not cross a circuit element have the same voltage.

Example-03

• Determine the power absorbed by each element in the circuit

Passive Elements

- The magnitude of the voltage drop and current flowing through passive devices depends on the voltage and current sources that are present and/or recently attached to the circuit.
 - These components can dissipate power immediately or store power temporarily and later release the stored power back into the circuit.

Switches

• Switches are used to control whether a complete path is formed from an end of at least one power supply to the other end of the same power supply (closed circuit).

- Current will only flow when there is a closed circuit.

- Switches can be mechanical, as are used on light switches in your home, or are electronic switches, which are semiconductor based.
- Electronic switches are used in TV sets, for example, to turn on the TV when an infrared optical signal from the remote control is detected.

Protective Devices

- Circuits that have carry dangerous levels of current and voltages are required to include fuses, circuit breakers, or ground fault detectors by federal and state electrical safety codes.
 - These protective devices are designed to create an open circuit, or a break in the round trip path in the circuit, when a malfunction of a component or other abnormal condition occurs.
 - The speed of response of the protective device, fastacting or time-delay (slow-blow) is determine by the engineer, based upon the expected type of malfunction.

Wires

- Wires are assumed to have zero resistance; i.e., they are ideal conductors or short circuits.
 - The current carrying capability of a wire is determined by its diameter or cross-sectional area.
 - AWG, American wire gauge, is the standard followed in the US and is used to rate how much current a wire can safely carry.
 - The larger the gauge wire, the smaller its current carrying capability is.
 - The AWG standard includes copper, aluminum and other wire materials.
 - Typical household copper wiring is AWG number 12 or 14.
 - Telephone wire is usually 22, 24, or 26.
 - The higher the gauge number, the smaller the diameter and the thinner the wire.

AWG to square mm cross sectional area

(inches) (mm)

0.0905

0.0808 0.0720

0.0641

0.0571

0.0508 0.0453 0.0403 0.0359

0.0320

0.0285 0.0254 0.0226

0.0201

0.0179
0.0159

Area mm²)

4.17

2.63

2.08

1.65 1.31 1.04 0.82 0.65 0.52

0.32

0.26 0.20

0.16

2 30

1.83

1.63

1.45

1.29 1.15 1.02

0.91

0.81

0.81 0.72 0.65 0.57

0.51

0.45

American Wire Gauge (#AWG)	Diameter (inches)	Diameter (mm)	Cross Sectional Area (mm ²)	American Wire Gau (#AWG)
0000 (4/0)	0.460	11.7	107	11
000 (3/0)	0.410	10.4	85.0	12
00 (2/0)	0.365	9.27	67.4	13
0 (1/0)	0.325	8.25	53.5	14
1	0.289	7.35	42.4	15
2	0.258	6.54	33.6	16
3	0.229	5.83	26.7	18
4	0.204	5.19	21.1	19
5	0.182	4.62	16.8	20
6	0.162	4.11	13.3	21
7	0.144	3.67	10.6	22
8	0.129	3.26	8.36	23
9	0.114	2.91	6.63	24
10	0.102	2.59	5.26	25

Ground

- Earth ground is a ground that is physically connected to the earth, itself.
 - All homes have an earth ground
 - a wire connected to a metal pipe that is driven into the ground immediately next to the house.
 - Wires that have a green jacket or are bare copper are connected to this pipe.
- Reference ground or common is used in a circuit to indicate a point where the voltage in the circuit is equal to zero.

General Rules

- All points on a same electric wire have the same voltage.
- A voltage source always have voltage difference of its pins equal to its value.
- A current source always have current pass through it equal to its value.
- Ground always has zero voltage. (0 volts)

Electric Flow Rule

- Electric current flows from high voltage to low voltage when there is a path.
- Electric current can freely pass through electric wire.
- Electric current can flow through a resistor with the amount according to Ohm's law.
- Electric current can flow through a voltage source with the amount depended on other components in the circuit.
- Electric current can flow pass a current source according to its value.

Charge

- is the fundamental property of matter that causes it to experience a force when placed in electro magnetic field and refers to electrons & protons
- The absolute value of the charge on an electron is 1.6×10^{-19} C
- The symbol used is Q or q
 - Uppercase is used to denote a steady-state or constant value
 - Lowercase is used to denote an instantaneous value or time-varying quantity

Current

- Symbol used is *i* or *I*
- Current, *i*, is measured as charge moved per unit time through an element.

$$i = \frac{dq}{dt} \qquad Q = \int_{t_1}^{t_2} i dt$$

• Amount of charge that has passed a given point:

$$q(t) = \int_{t_0}^t i(\tau) d\tau + q(t_0)$$

Example-05

- The charge flowing in a wire is plotted in below Figure.
- Sketch the corresponding current.

DC vs. AC

- DC (or dc) is the acronym for direct current.
 The current remains constant with time.
 - Uppercase variables are used when calculating dc values.
- AC (or ac) is the acronym for alternating current.
 - Specifically, AC current varies sinusoidally with time and the average value of the current over one period of the sinusoid is zero.
 - Lowercase variables are used when calculating ac values.
 - Other time-varying currents exist, but there isn't an acronym defined for them.

Voltage (Potential Difference)

- The electromotive force (emf) that causes charge to move.
- 1 Volt = 1 Joule/1 Coulomb

$$v = \frac{dw}{dq}$$

Power

• The change in energy as a function of time is power, which is measured in watts (W).

$$p = \frac{dw}{dt} = \left| \frac{dw}{dq} \frac{dq}{dt} \right| = vi$$

Energy

• Energy is the capacity to do work.

$$w = \int_{t_1}^{t_2} p \, dt = \int_{t_1}^{t_2} v \, i \, dt$$

• Units for energy are kW-hr, which is what the electric company measures on your electric meter.

1 kW-hr = 3.6 MJ.

Conservation of Energy (Tellegen's Theorem)

- All power instantaneously consumed by components must be instantly generated by other components within the circuit.
- For this reason, the algebraic sum of power in a circuit, at any instant of time, must be zero $\sum p = 0$
- The energy absorbed or supplied by an element from time *t*₀ to time t is

$$w = \int_{t_0}^t p \, dt = \int_{t_0}^t v i \, dt$$

- Now for the fourth band of gold, representing a tolerance of 5%
- Given a 50 Ω resistor with a tolerance of 10%, what is the minimum and maximum voltage across the resistor when a current of exactly 2 mA flows through it?

Conductance & Open/Short Circuits

- For a linear resistor, the ratio of current to voltage is also a constant
 - $\frac{i}{v} = \frac{1}{R} = G$ where G is called the conductance - units = siemens (S), 1 S = 1 A/V = Ω^{-1}
- open circuit: $R = \infty$, and i = 0 for any voltage across the open terminals
- short circuit: R = 0, and v = 0 for any current through the short
 - For all of our circuits, wires are assumed to be perfect short circuits.
 - i.e. since v = i×R and wires have R = 0, all neighboring points along a wire have the same voltage.

