BLM1612 - Circuit Theory

Syllabus

The Instructors: Prof Dr Nizamettin AYDIN navdin@vildiz.edu.tr

> Dr. Hamza Osman ILHAN hamza@vildiz.edu.tr

Course Details

- Course Code : BLM1612 .
- Course Name: Circuit Theory (Devre Teorisi)
- Instructors : Prof. Dr. Nizamettin AYDIN
 - Dr. Hamza Osman ILHAN Lab Assistants:
 - Ars. Gör. Hasan Burak Avcı http://avesis.yildiz.edu.tr/hbavci/ Ars. Gör. Kübra Adalı http://avesis.yildiz.edu.tr/adalik/ Arş. Gör. Nihal Altuntas http://avesis.yildiz.edu.tr/nihaltun/

Assesment (for the first-time takers)			
Method	Quantity	(%)	
Quiz	-	-	
Homework/Problem Solving	g 5	10	
Laboratory	5	20	
Midterm Exam(s)	1(2)	30	
Final Exam	1	40	
Attendance & participation	-		

Assesment (for the ones who have taken labs before)

Method	Quantity	(%)
Quiz	-	-
Homework/Problem Solving	g 5	10
Laboratory Midterm	1	20
Midterm Exam(s)	1(2)	30
Final Exam	1	40
Attendance & participation	-	

Course Outline

1. Introduction

Lumped circuit elements, Levels of abstraction, What are the circuits?, Course objectives. 2. Basic Concepts.

- Units, Charge, Current, Voltage, Power, Conservation of Energy, Circuit Elements, Networks vs. Circuits, Ohm's Law, .
- 3. Voltage and Current Laws.

Unage and Current Laws. Circuit Terminology, Kirchhoff's Current Law, Kirchhoff's Voltage Law, The Single-Loop Circuit, Conservation of Energy, The Single-Node-Pair Circuit, Series Circuits, Parallel Circuits, Voltage Division, Current Division. Odal and Mesh Analysis. Model Lew Version 2010

- Nodal (or "Node-Voltage") Analysis, Nodal Analysis with Supernodes, Mesh (Current) Analysis, Mesh Analysis with Supermeshes, Equivalent Practical Sources. 5. Linearity & Superposition.
- Linearity, Superposition, Superposition: Voltage Sources, Superposition: Current Sources, Practical Voltage Sources, Practical Current Sources. 6. Thevenin & Norton Equivalents.
- Thevenin Equivalent, Power from a Practical Source, Maximum Power Transfer . 7. The Operational Amplifier.

The Operational Amplifier, Inverting Amplifier, Noninverting Amplifier, Voltage Follower, Summing Amplifier, Difference Amplifier, Op-Amp Cascades, Op-Amp Parameters, Common Mode Rejection, Saturation, An instrumentation amplifier

Course Outline

8. Capacitors and Inductors.

- Capacitance, Capacitor Current & Voltage, Capacitor Characteristics, Inductance, Inductor Current & Voltage, Inductor Characteristics, Inductor Energy Storage, DC Capacitor Circuits, DC Inductor Circuits. 9. Basic RL and RC Circuits.
- The Source-Free RL Circuit, The Source-Free RC Circuit, Unit-Step Definition, Driven RL Circuit, Driven RC Circuit.

R.C. Circuits.
 Parallel RLC Circuit, Series RLC Circuit, RLC Solution: Over-damped, RLC Solution: Critically Damped, RLC Solution: Under-damped, The Complete Response Of The RLC Circuit.

RLC Circuit. 11. AC Analysis. Complex numbers, phasors, impedance, admittance, Sinusoidal steady-state; Ohm's Law, KVU, KCL for AC circuits, Sinusoidal steady-state: Thevenin, superposition, examples. 12. The Frequency Response.

- Frequency response: transfer function, logarithms, Bode plots. Frequency response: resonance, passive & active filter design
 13. Laplace: Introduction to transforms, inverse transform.
- Laplace: theorems, solving differential equations Domain analysis s-Domain analysis: transfer functions, poles, zeroes. s-Domain analysis: nodal, mesh, additional techniques

COURSE OBJECTIVES

- Students will be able to:
 - Analyze wide range of pure resistive DC circuits using the different techniques covered through-out the course.
 - Gains hands-on experience in DC circuit problem solving tricks and shortcuts.
 - Utilize the Thevenin theorem as a core tool in circuit analysis.
 - Analyze RL, RC, and RLC circuits with the proper tools.
 - Carry power consumption calculation for different components in a DC circuit.
 - Design, simulate, and implement Basic DC circuits.

Suggested Texts

Engineering Circuit Analysis

by William Hayt, Jack Kemmerly, Steven Durbin ISBN 0073529575 Basic engineering circuit analysis by J. David Irwin, R. Mark Nelms ISBN 978-1-118-95598-7

Introductory Circuit Analysis

by Robert L. Boylestad ISBN 978-0-13-392360-5

Rules of the Conduct

- No eating /drinking in class - except water
- Cell phones must be kept outside of class or switched-off during class
 - If your cell-phone rings during class or you use it in any way, you will be asked to leave and counted as unexcused absent.
- No web surfing and/or unrelated use of computers,
 - when computers are used in class or lab.

Rules of the Conduct

- You are responsible for checking the class web page often for announcements.
- Academic dishonesty and cheating will not be tolerated and will be dealt with according to university rules and regulations
 - Presenting any work, or a portion thereof, that does not belong to you is considered academic dishonesty.
- University rules and regulations:
 - <u>http://www.ogi.yildiz.edu.tr/category.php?id=17</u>
 - <u>https://www.yok.gov.tr/content/view/544/230/lang,tr_TR/</u>

Attendance Policy

- The requirement for attendance is 70%.
 - Hospital reports are not accepted to fulfill the requirement for attendance.
 - The students, who fail to fulfill the attendance requirement, will be excluded from the final exams and the grade of F0 will be given.

Electric Circuit

- An arrangement into a network of several connected two-terminal electrical components.
 - Each type of component will have its own symbol.

Abstraction

- We have electromagnetic phenomena and this data can be expressed by using Maxwell's equations. (Scientific part)
- Electrical engineers create a new abstraction layer on top of Maxwell's equations called the lumped circuit abstraction.
- By using this lumped circuit abstraction electrical and computer systems can be designed.

Lumped circuit element

 A lumped circuit element is often used as an abstract representation or a model of a piece of material with complicated behaviour.

a) A simple light bulb circuit b) The lumped circuit represantation

- *R* is a lumped element abstraction for the bulb.
- A lumped element is described by its v-i (voltage - current) relation.

Course objectives

• (1) to understand the electromagnetic concepts of charge, voltage, current, power, and energy

Course objectives

 (2) to understand the function of linear circuit elements (e.g. resistors, inductors, capacitors, voltage sources, current sources, operational amplifiers)

- a linear circuit is an electric circuit in which circuit parameters (Resistance, inductance, capacitance) are constant.

- a nonlinear circuit is an electric circuit whose parameters are changing with respect to current and voltage (diodes, transistors)

Linear vs. Nonlinear

- Linear problems are inherently more easily solved than their nonlinear counterparts.
- For this reason, we often seek reasonably accurate linear approximations (or models) to physical situations.
- The linear models are more easily manipulated and understood which makes **analysis** and **design** a more straightforward process.

Linear vs. Nonlinear

- Many systems behave in a reasonably linear fashion over a limited range
 - allowing us to model them as linear systems if we keep the range limitations in mind.
- For example, consider the common function $f(x) = e^x$
- A linear approximation to this function is

 $f(x) \approx 1 + x$

Linear vs. Nonlinear

• Comparison of a Linear Model for *e*^x to Exact Value

0.0001 1.0001 1.0001 0.00 0.001 1.0010 1.001 0.00 0.01 1.0101 1.01 0.00 0.01 1.0101 1.01 0.00 0.01 1.0102 1.1 0.59 1.0 2.7183 2.0 269	x	f(x)*	1 + <i>x</i>	Relative error**
0.001 1.0010 1.001 0.00 0.01 1.0101 1.01 0.00 0.1 1.1052 1.1 0.5' 1.0 2.7183 2.0 26' "Oward to four similirant fours." " 1.1 1.1	.0001	1.0001	1.0001	0.0000005%
0.01 1.0101 1.01 0.00 0.1 1.1052 1.1 0.5' 1.0 2.7183 2.0 269 "Outled to four similicant finances	.001	1.0010	1.001	0.00005%
0.1 1.1052 1.1 0.54 1.0 2.7183 2.0 269 "Outled to four similicant formes	.01	1.0101	1.01	0.005%
1.0 2.7183 2.0 269 "Ouoted to four significant figures.	0.1	1.1052	1.1	0.5%
*Ouoted to four significant figures	.0	2.7183	2.0	26%
**Relative error $\triangleq \left 100 \times \frac{e^x - (1+x)}{e^x} \right $	Quoted to four sig *Relative error ≜	gnificant figures. $\left 100 \times \frac{e^x - (1 + x)}{e^x}\right $		

Analysis and Design

- **Analysis** is the process through which we determine the scope of a problem, obtain the information required to understand it, and compute the parameters of interest.
- Design is the process by which we synthesize something new as part of the solution to a problem.
- A crucial part of design is analysis of potential solutions!

Matrix solution to linear equations

<u>Step 1</u>: Identify the coefficients and variables...

Ma	trix inversion
$V = G^{-1} \cdot B$	$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -4 \\ -3 & 6 & -2 \\ -4 & -2 & 11 \end{bmatrix}^{-1} \begin{bmatrix} -11 \\ 3 \\ 25 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
A matrix multiplied equals the <u>identity</u> of (ones on the main do zeroes off the diago	by its inverse matrix iagonal, mal). $G^{-1} \cdot G = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
We will use Matlab to s	solve for G^{-1} . $G^{-1} = \begin{bmatrix} .325 & .215 & .157 \end{bmatrix}$ $.215 & .319 & .136 \\ .157 & .136 & .173 \end{bmatrix}$

Matlab Procedure			
>> G = [7 -3	-4;-3 6 -2	;-4 -2 11]	
G =			
7 -3 -3 6 -4 -2 >> G^-1	-4 -2 11		
ans =			
0.3246 0.2147 0.1571	0.2147 0.3194 0.1361	0.1571 0.1361 0.1728	

Matlab Procedure		
>> B = [-11;3;25]		
в =		
-11 3 25		
>> V = G^-1 * B		
V =		
1.0000 2.0000 3.0000		

