

Page : 1

Solution 9-2 cont.:

- 3.c. The random number R = 25 is better, because the random number R = 21 has the consequence that C_a = M. So there is no encryption, when using R = 21.
- 5. Decryption:

```
Z^{-1} = r^{-X_b} = 14^{-4 \mod 28} \mod 29 = 14^{-4+28} \mod 29 = 16
M = C<sub>8</sub> * Z<sup>-1</sup> = 21 * 16 mod 29 = 17
```

Page: 12

ElGamal Secrecy-System Over GF (2^m)

1.	If P(x) = x ⁴ + x + 1 is the modulus then x ⁴ + x	+ 1 = 0,		
	thus x4 = x + 1. The exponents of x in GF(2	24) are:		
	x = x	0010		
	x ² = x ²	0100		
	$x^3 = x^3$	1000		
	x ⁴ = x + 1	0011		
	$x^5 = x x^4 = x^2 + x$	0110		
	$x^6 = x (x^2 + x) = x^3 + x^2$	1100		
	$x^7 = x (x^3 + x^2) = (x^4 + x^3) = x^3 + x + 1$	1011		
	$x^8 = x^4 + x^2 + x = x + 1 + x^2 + x = x^2 + 1$	0101		
	$x^9 = x^3 + x$	1010		
	$x^{10} = x^4 + x^2 = x^2 + x + 1$	0111		
	$x^{11} = x^3 + x^2 + x$	1110		
	$x^{12} = x^4 + x^3 + x^2 = x^3 + x^2 + x + 1$	1111		
	$x^{13} = x^4 + x^3 + x^2 + x = x^3 + x^2 + 1$	1101		
	$x^{14} = x^4 + x^3 + x = x + 1 + x^3 + x = x^3 + 1$	1001		
	$x^{15} = x^4 + x = x + 1 + x = 1$	0001	\Rightarrow ord(x) = 15	
2	Possible orders are the divisors of 24 - 1 = 1	5 these are	1 3 5 and 15	

1.	Compute the exponents of the element $\delta = x = 000010$ as x ⁱ mod P(x) for i= 1 to 10.
2.	Which multiplicative orders are possible in GF(2*)?
3.	Compute the probability that a randomly selected element is primitive in GF(2 ^b).
4.	Check if you can take a = x + 1 as a primitive element.
5.	User A has the secret key $X_a = 22$ and User B has the secret key $X_b = 10$. Compute the public keys Y_a and Y_b .
6.	User A encrypts the message $M = 100100 = x^5 + x^2$ and send it to user B by using the random number $R = 20$. Compute the encrypted message C_a and r.
7.	Decrypt the cryptogram C _a on the receiver side B showing all necessary computations therefore.
Not	te: For the selected P(x), e = 9 this mean ord(x) = 9
(fro	m the table list of all irreducible polynomials over GF(2))

Solution 9-6:

= x	000010	
= x ²	000100	
= x ³	001000	
4 = x ⁴	010000	
5 = x ⁵	100000	
(⁶ = x ³ + 1	001001	
$x^7 = x (x^3 + 1) = x^4 + x$	010010	
$x^8 = x^5 + x^2$	100100	
$x^9 = x^6 + x^3 = x^3 + 1 + x^3 = 1$	000001	\Rightarrow ord(x) = 9 \Rightarrow x is not primitive
x ¹⁰ = x	000010	

3. # of all non-zero elements: $2^6 - 1 = 63$ # of primitive elements: ϕ (63) = ϕ (3² * 7) = 63 * (1 - 1/3) * (1 - 1/7) = 36 P(element = primitive) = (36 / 63) * 100 = 57.14%

Page: 29

Page: 30

6. form αx is sufficient)

Page: 34

Note: For the selected P(x), e = 17 this mean ord(x) = 17 (from the table list of all irreducible polynomials over GF(2))

Helping computations :

 $(x + 1)^{25} = x^7 + x^6 + x$ $(x + 1)^{80} = x^7 + x^6 + x^3 + 1$

n = 1		10111001	127	1000011011	511	1111100011	511	10010000111	1023	11111013011	1923	100111100301	2947	100111101101	TX
	-	10111111	127	1000100001	511	1111101001	511	10111100101	1007	11111100001	341	100111101111	89	11000001011	15
10	1	11000001	127	1000101101	511	1111111011	511	1011110111	1123	11111110011	1025	100111110111	2047	110000001100	15
11	1	11001011	127	1000110011	511			1011111011	3023	1111111110001	1023	101000000000	2047	110000011000	x
		11010011	127	1001001011	73	n = 10		11000010011	1023	HUIHINH	11	101000000111	3947	110000011111	2
* = 2		11010101	127	1001011001	511		-	11000000101	1123		-	101000010011	2047	110000110001	E.
		11100101	127	1001011111	511	100000000001	1023	1000000011	33	e = 11		101000010101	2047	130001010111	2
	3	11101111	127	1001100101	73	10000001111	341	11006000101	1023			103000103001	2047	110001100001	13
-		11110001	127	1001101001	511	10000011011	1023	11000110001	341	100000000000	2947	103901001001	2047	11000110101	13
m = 3	e	11110111	127	1001101111	511	10000011101	341	1000110111	1923	100000000111	1041	103001100001	2047	110001110011	2
1011			187	1001110111	511	10000000111	1023	110000001111	1023	1000000001101	1001	101001101001	Long L	110001119990	1.
1011			_	1001111101		10000001101	104.5	1100000000	201	1000000001111	1000	100001111000	1000	11001000000	12
1101	. "			10100000111	511	10000110101	.95	10000011011	1000	100001000011	241	Instancesta	2041	110010000001	15
		1000110011		1010011001	11	1000000000111	1.22	11001111001	10023	1000011003101	1047	103550500001	1041	110010010011011	15
		100011101	355	1010000011	511	10001100011	1.50	1100111111	1023	100001100001	2047	1000000M101	2047	110010011101	15
10011	15	100101011	144	1010100101		10001100011		11030000101	11	100001111011	1141	1000000001111	1041	1100000110011	13
11001	15	100101301	155	101010101111	511	10001101111	1002.5	11010001001	1023	100010011101	2642	10000000001011	2547	110000111111	15
11111	4	100111001	17	1010110111	511	10010000001	1073	11010400111	90	1000000000010104	2047	100000110011	2542	1100110001111	15
		100111111	85	1010111101	511	10010001001	1023	11030001303	341	1000000111111	2547	100003110101	3542	110011001101	15
4 - 5		101001301	255	10110001111	511	10010011001	341	11035110351	1025	10001001001001	2047	101011010101	3047	130011010011	15
4 - 5		101011111	155	1011010001	511	10035501001	1.11	110000111111	341	1000000110000	2042	100010011111	2047	11000100000	15
100101	24	101100011	155	1011010001	\$11	1001010101001	1 100	11011000001	1023	100011000011	29	1000011000011	25	1300/1100011	12
101001	31	101100101	255	1011110101	511	10011000101	1023	11011001104	341	100011001111	2947	101011101001	2047	110011101001	15
101111	31	101101001	755	1011111001	511	10011001001	341	11011000011	1025	3000110310001	2347	101011101111	2047	110011110111	15
110111	31	101110001	255	1100000001	73	10011000111	1023	11011011111	1623	100011100005	3547	101011110001	2047	11010000011	15
111011	31	101110111	85	1100010011	511	10011100111	1023	1101110111	341	100011100111	2047	101011111011	3547	110100001111	15
111101	35	101111011	85	1100010101	511	10011101101	341	110011111000	1025	100011101011	2047	101200000011	2547	110100011101	15
		110000111	255	1100011111	511	10011110011	1023	11100001111	341	100011110101	2047	101100001001	3547	110100100111	15
n = 6		110001011	85	1100100011	511	10011111111	1025	11100010031	341	100100001101	2547	101100010001	3547	110100101101	13
	-	110001101	255	1100110001	511	10100001011	93	111000001111	1605	100100010011	2047	101100110011	2547	1100010000001	15
1000011	63	110011111	51	1100111011	511	10100001101	1023	11100011101	1025	100100100100	2947	101100111111	2047	110001000111	15
1001001	9	110100011	85	1101001001	73	10100011001	1023	11100100001	1503	1001001010101	2047	3010010000001	2047	100001010301	12
1010111	21	110101001	255	1101001111	511	10100011111	341	11100000011	95	100100110111	89	101101001011	2047	110091011001	Įâ
1011011	63	110110001	51	1101011011	511	10100100011	1023	11300100001	241	100100111011	2047	101101011001	2047	110001100011	12
1100001	63	110111101	85	. 1101100001	511	10100110001	1023	11100111001	1005	100100111101	2047	1011010111111	2047	1110061001111	120
1100111	63	111000011	255	1101101011	511	10100111101	1023	11100000111	1623	10030100000311	2047	101101100100101	2047	1100011100001	22
1101101	63	111001111	255	1101101101	511	10101000011	1023	11100004101	1103	10010003001	2047	101104101111	2047	110010010011	22
1110011	63	111010111	17	1101110011	511	10100860111	1023	11100000101	1003	1001010100001	2047	101191111101	2047	110030041111	18
1110101	21	111011101	85	1101111111	311	10101100001	93	**************	red3	1000001010011	100	101100000111	and 2	1111111001001	18
-	-	111100111	255	1110000101	511	10101100111	341	11991900011	7403	100101110011	10047	1011100000011	2247	110020111011	1ð
n = 2.	ج	111110011	- 51	11100011111	211	10101130011	1023	11 Martin Int		1003101110001	1000	101110000011	227	10000001100	12
10000011	133	111110101	#55	1110100001		10110000101	10023	11110000001	241	100110000011	2047	1011102021111	2140	115511010111	15
100010011	177		- 40	11101110001	100	1011000001111	1 1013	11110000111	341	100110001111	2047	Includents of	1147	110010011011	12
10001111	127			1111000111	SIL	101100011011	10025	11110001101	1022	100130900011	2047	10111011101	3542	11011100000	15
10010001	122		-	1111001011	511	101101000001	1073	11110010011	11022	100110101101	2047	101111001001	200	11011100111	12
10011101	122	1000000011	73	1111001101	311	10130000011	341	11110091001	341	10011011001	2047	101110011011	2547	13011110101	12
10100111	122	1000010001	511	1111030101	511	10110111001	341	11110110001	1023	100113000111	3047	10111041101	3547	110111111111	
10101011	122	1000010111	73	1111011001	\$11	10111000001	141	11113000101	341	100113011001	2047	10111100111	2547	11100000000	1.
															1

1 0 00 1 0 00	Annex: Some factorizations for 2 ⁿ -1 $2^{1} - 1 = 7$, $2^{10} - 1 = 524787$, $2^{2} - 1 = 3 = 5$, $2^{20} - 1 = 32555 \times 11 \times 31 \times 41$	
11 30-0 1100001 0001 1200 12 30-0 1100001 11 30-0 13 30-0 1100001 11 30-0 30-000 1100000001 30-0 30-000 1100000000 30-0 10 30-0 1100001 100-0 10 30-0 110001 100-0 30-0 1100000000 30-0 10 30-0 11000000000 30-0 10 30-0 1100000000 30-0 10 30-0 11000000000 30-0 10 30-0 1100000000 30-0 10 30-0 1100000000 30-0 10 30-0 1100000000 30-0 10 30-0 1100000000 30-0 10 30-0 11000000000 30-0 10 30-0 11000000000 30-0 10 30-0 11000000000000000000000000000000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
00 3500 100000000 2500 32000 10000000 2500 11 3500 100000000 3500 10 3500 1000000000 3500 10 3500 10000000000000000000000000000000	$ \begin{array}{l} 2^{14} & 1 = 23 \times 19 \ 69 \\ 2^{27} & 1 = 3 \times 39 \times 59 \times 73 & 2^{28} & 1 = 3 \times 59 \times 59 \times 43 \times 113 \times 127 \\ 2^{16} & 1 = 19 \times 19 \times 59 \times 73 \times 1103 \times 209 \\ 2^{26} & 1 = 19 \times 12 \times 27 \times 1103 \times 209 \\ 2^{26} & 1 = 3 \times 43 \times 127 & 2^{26} & 1 = 33 \times 111 \times 31 \times 151 \times 331 \\ 2^{16} & 1 = 7 \times 31 \times 151 & 2^{27} & 1 = 1 = 3 \times 47 \times 111 \times 31 \times 151 \times 331 \\ 2^{26} & 1 = 3 \times 47 \times 177 \times 57 & 2^{26} & 1 = 1 = 3 \times 57 \times 157 \times 557 \times 5537 \end{array} $	
11 2020 10001100 200 12 2020 10001100 200 12 2020 1000100 200 2020 1000100 200 2020 1000100 200 2020 1000100 200 2020 1000100 200 2020 10001000 200 2020 10001000 200 2020 10001000 200 2020 10001000 200 2020 10001000 200 2020 1000000000000000000000000000000000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Page: 43		Page: 44