Problem 8-1:
Set up an RSA Pubic-key directory for two users A and B using the prime numbers 7,3 and 11,3 respecively. Use the open keys 5,3 for A and B respectively.
. bot cryplogram $\mathrm{Y}_{\text {A }}$ and signature S_{A} to B.
3. Let user B verify the signature of A and decrypt the message.

1. Solution 8-1:

A:		USER B:
$N_{a}=p_{a} * q_{a}=7 * 3=21$ open modulus of A $p_{a} * q_{a}=7,3$ two secret primes $\begin{aligned} & \mathrm{a}\left(\mathrm{~N}_{\mathrm{a}}\right)=\left(\mathrm{p}_{\mathrm{a}}-1\right)^{*}\left(\mathrm{qa}_{\mathrm{a}}-1\right)=(7-1)(3-1)=12 \end{aligned}$	$\begin{array}{\|c} \frac{U s e r}{} \mathrm{~A} \\ -\mathrm{N}_{\mathrm{a}}=21 \\ \mathrm{E}_{\mathrm{a}}=5 \end{array}$	$\mathrm{b}=\mathrm{p}_{\mathrm{b}}$
$\begin{aligned} & E_{a}=\text { open Encryption key of } A=5 \\ & D_{a}=E_{a^{-1}}\left[\bmod \varphi\left(N_{a}\right)\right]=5^{-1} \bmod 12=5 \end{aligned}$		
$\operatorname{gcd}\left[\mathrm{E}_{\mathrm{a}}, \varphi\left(N_{\mathrm{a}}\right)\right]=1, \quad \operatorname{gcd}[5,12]=1$		gcd
2. Encryption $M=6$ to $B: Y_{A}=M^{E b} \bmod N_{b}=(6)^{3} \bmod 33=18$		
Signing $M=6$ by $A: S_{A}=\left(Y_{A}\right)^{\text {Da }} \bmod 21=(18)^{5} \bmod 21=9 \Rightarrow\left(Y_{A} S_{A}\right)=(18,9)$ is sent to B		
3. Sinature verification by B: $\mathrm{Y}_{\mathrm{A}}=\left(\mathrm{S}_{A}\right)^{E a} \bmod 21=(9)^{5} \bmod 21=18=\mathrm{Y}_{\mathrm{A}} \Rightarrow \mathrm{A}$ is authentic Decryption by $B: M=Y_{A}{ }^{\mathrm{DD}}=(18)^{7} \bmod 33=6$		

4

Solution 8-2 cont.:

. Decryption by $\mathrm{B}: ~ \mathrm{M}=\mathrm{Y}_{\mathrm{A}}^{\mathrm{Db}}=(32)^{9} \bmod 69=2$
Sinature verification by $\mathrm{B}: \mathrm{M}=\left(\mathrm{S}_{\mathrm{A}}\right)^{E \mathrm{a}} \bmod 55=(8)^{7} \bmod 55=\mathbf{2}=\mathrm{M}=>\mathrm{A}$ is authentic

One possibility is to encrypt S_{a} as well using E_{b}. That is $Y_{\mathrm{Sa}_{a}}=\left(\mathrm{S}_{2}\right)^{\mathrm{Eb}}=8^{5} \bmod 69=13$ User B can then decrypt $Y_{S_{a}}$ to get the signature and then check it.

Problem 8-2:
Set up an RSA Public-key directory for two users A and B using the prime numbers 11,5 and 23,3 respectively. Use the open keys 7,5 for A and B respectively
User A encrypts the message $M=2$ to send the cryptogram Y_{A} to B and signs M to generate his signature S_{A}. Compute Y_{A} and S_{A} sent to B.
his signature S_{A}. Compute Y_{A} and S_{A} sent to B.
Decrypt the message at user's B site and verify user A 's signature $S A$.
User B signs the received message and sends it back to A. Compute his signature S_{B}
4. In $2, \mathrm{M}$ can be revealed by any other user by decrypting S_{A} using the open key E_{a}. Propose possible solution to counteract that possibility and keep M secret.
Solution 8-2:

2. Encryption $M=2$ to $B: Y_{A}=M^{E b} \bmod N_{b}=(2)^{5} \bmod 69=32$ Signing $M=2$ by $A: S_{A}=(M)^{)^{a}} \bmod 55=(2)^{23} \bmod 55=8 \Rightarrow\left(Y_{A,} S_{A}\right)=(32,8)$ is sent to B

Problem 8-3:

1. Compute the two prime factors p and q of m
2. Break the system and decrypt a received cryptogram $Y=7$

Solution 8-3:

1. $\varphi(m)=(p-1)(q-1)=m-p-q+\Rightarrow s=(p+q)=m-\varphi(m)+1$
$s=1243-1120+1=124$
$m=p^{*} q=1243$
porq $=\left(s \pm \sqrt{s^{2}-4 m}\right) / 2=\left(124 \pm \sqrt{124^{2}-4 \times 1243}\right) / 2$
$\Rightarrow \quad p=113, q=11$
2. Decryption if the open encryption key $\mathrm{E}=27$:
that is $D=27^{1}(\bmod 1120)=83$
[27-1 is computed by the extended gcd algorithm $\operatorname{gcd}(1120,27)=1$]
$\Rightarrow 27^{-1}=83$
$\mathrm{M}=\mathrm{Y}^{\mathrm{D}}=(7)^{83} \bmod 1243=662$
\square Page:

Problem 8-4: ARSA cryptosystem with two users A and B having the secret prime number pairs for $A: 13$ and 7 and for $B: 17$ and 3 is used.

1. Find out the adequate open key of user A from the following list of integers: [21, 18, 11]. Compute the corresponding secret key for user A .
2. Find out the adequate open key of user B from the following list of integers: $[26,21,22]$. Compute the corresponding secret key for user B.
3. User B encrypts the message $M=3$, and send the resulting cryptogram Y_{A} to A. User B then signs the cryptogram Y_{A} and generates the signature S_{B}. Compute Y_{A} and S_{B}.
4. Decipher the cryptogram Y_{A} on user A's site and verify the Signature S_{B}.
5. User A signs the received message M and sends his signature S_{A} back to B. Compute the signature S_{A}.
6. How many open keys are possible for each user?
```
3. User B encrypts the message M=3, and send the resulting cryptogram }\mp@subsup{Y}{A}{}\mathrm{ to A. User B then signs
    the cryptogram }\mp@subsup{Y}{A}{}\mathrm{ and generates the signature S}\mp@subsup{S}{B}{}\mathrm{ . Compute }\mp@subsup{Y}{A}{}\mathrm{ and }\mp@subsup{S}{B}{
    YA}=(M\mp@subsup{)}{}{\mp@subsup{E}{A}{}}\operatorname{mod}\mp@subsup{N}{A}{}\quad\mp@subsup{S}{B}{}=(\mp@subsup{Y}{A}{}\mp@subsup{)}{}{\mp@subsup{D}{B}{}}\operatorname{mod}\mp@subsup{N}{B}{
    YA}=(3\mp@subsup{)}{}{11}\operatorname{mod}91=61\quad\mp@subsup{S}{B}{}=(61\mp@subsup{)}{}{29}\operatorname{mod}51=(10\mp@subsup{)}{}{29}=2
```

4. Decipher the cryptogram Y_{A} on user A's site and verify the Signature S_{B}.
Decryption:
$t \quad\left(Y_{X}\right)^{D_{A}} \bmod N_{A} \quad$ checkif: $\quad\left(S_{B}\right)^{E_{B}} \bmod N_{B}=Y_{A} \bmod N_{B}$
$M=\left(Y_{A}\right)^{D_{A}} \bmod N_{A} \quad\left(61^{25}\right)^{21} \bmod 51=61 \bmod 51$
$M=\left(3^{11}\right)^{59} \bmod 91 \quad 61^{11^{\text {spmod }} 122} \bmod 51=10$
$\mathrm{M}=3^{699 \bmod 72} \bmod 91=3^{1} \quad 61^{1} \quad \bmod 51=10$
5. User A signs the received message M and sends his signature S, back to B Compute the signature
S_{A}.
$S_{A}=(M)^{D_{\lambda}} \bmod N_{A}$
$S_{A}=(3)^{59} \bmod 91=61$
6. How many open keys are possible for each user?
\# of keys for user $\mathrm{A}=\varphi\left[\varphi\left(\mathrm{N}_{\mathrm{A}}\right)\right]=\varphi(72)=\varphi\left(2^{*} 2^{*} 2^{*} 3^{*} 3\right)=72(1-1 / 2)(1-1 / 3)=24$ keys
\# of keys for user $\mathrm{B}=\varphi\left[\varphi\left(\mathrm{N}_{\mathrm{B}}\right)\right]=\varphi(32)=\varphi\left(2^{5}\right)=32(1-1 / 2)=16$ keys

10

Solution 8-5:

1. Set up Alice
$N_{A}=11 * 23=253, \varphi\left(N_{A}\right)=(11-1)(23-1)=220$
$\operatorname{gcd}\left[E_{A}, \varphi\left(N_{A}\right)\right]=1 \Rightarrow>$ select 37 as $\operatorname{gcd}(220,37)=$
$E_{A}=37$
$D_{A}=-107 \bmod 220=113$ (see computation below)

Set up Bob
$N_{B}=31 * 7=217, \varphi\left(N_{8}\right)=(31-1)(7-1)=180$
$\operatorname{gcd}\left(E_{B}, \varphi\left(N_{B}\right)\right]=1 \Rightarrow>\operatorname{select} 11 \operatorname{as} \operatorname{gcd}(180,11)=$
$E_{B}=11$
$D_{B}=-49 \bmod 180=131($ see computation below)

Page: 11
8

Solution 8-4:

1. Find out the adequate open key of user A from the following list of integers: [21, 18, 11]. Compute the corresponding secret key for user A .
$N_{A}=13 * 7=91, \varphi\left(N_{A}\right)=(13-1)(7-1)=72$
$\mathrm{D}_{\mathbf{A}}=11^{-1} \mathbf{m o d} 72=-13=72 \cdot 13=59$

n_{1}	$\mathrm{~m}_{2}$	\mid	b_{1}	$\mathrm{~b}_{2}$	q	r
72	11		0	1	6	6
11	6		1	-6	1	5
6	5		-6	7	1	1
5	1		7	-13	5	0

$\mathrm{g}_{\mathrm{A}}=1$
$D_{A}=-13 \bmod 72=59($ see computation below $)$
2. Find out the adequate open key of user B from the following list of integers: $[26,21,22]$. Compute the corresponding secret key for user B.
$N_{\mathrm{B}}=17 * 3=51, \varphi\left(\mathrm{~N}_{\mathrm{B}}\right)=(17-1)(3-1)=32$ $\operatorname{gcd}\left(E_{\mathrm{B}}, \varphi\left(\mathrm{N}_{\mathrm{B}}\right)\right]=1 \Rightarrow>\operatorname{select} 21$ as $\operatorname{gcd}(32,21)=1$
$D_{B}=-3 \bmod 32=29$ (see computation below)
$\mathrm{D}_{\mathrm{B}}=21 \cdot \bmod 32=-3=32 \cdot-3=29$

n_{1}	n_{2}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	q	r	
32	21		0	1	1	11
21	11		1	-1	1	10
11	10		-1	2	1	1
10	1		3	-3	10	0

Page: 8

Problem 8-5: Assume having a setup of RSA cryptosystem with two peers Alice (A) and Bob (B) having the secret prime number pairs $(11,23)$ and $(31,7)$ respectively.

1. Choose the appropriate open keys E_{A} and E_{B} from the following lists. List $(A)=\{11,220,37\}$ and list $(B)=\{9,22,11\}$ respectively. Compute the corresponding secret keys D_{A} and D_{B} respectively.
2. Bob enciphers the message $M=12$ which should be sent to Alice as the cryptogram C_{B}. In a further step Bob signs M^{3} to generate the signature S_{B} and sends it to Alice. Calculate C and S_{B}
3. Decipher the cryptogram C_{B} on Alice's side
4. Verify the signature S_{B} on Alice's side
5. Alice signs the value $M^{3} \bmod N_{A}$ and sends her signature S_{A} back to Bob. Calculate the signature S_{A}. Verify S_{A} on Bob's side.
6. How many public key pairs are selectable for Alice and how many for Bob
7. Why is the system not secure if M is signed instead of M^{3} ?

Solution 8-5 cont.

2. Encryption $\mathrm{M}=12$ to Alice:
$C_{B}=(M)^{E_{A}} \bmod N_{A}$
$S_{B}=\left(M^{3}\right)^{D_{s}} \bmod N_{B}$

Decription by Alice:
$M=\left(C_{B}\right)^{D_{\lambda}} \bmod N_{A}=>M=(243)^{113} \bmod 253=12$
4. Signature Verification by Alice:
check if: $\left(S_{B}\right)^{E_{s}} \bmod N_{B}=M$
(209) ${ }^{11} \bmod 217=209=M^{3} \bmod N_{B}=12^{3} \bmod 217 \Rightarrow$ signature is authentic!
5.

Signing M^{3} by Alice: $S_{A}=\left(M^{3}\right)^{D_{A}} \bmod N_{A} \Rightarrow S_{A}=\left(12^{3}\right)^{113} \bmod 253=188$
Signature Verification by Bob: $M^{3} \bmod N_{A}=\left(S_{A}\right)^{E_{A}} \bmod N_{A}=(188)^{37 \bmod 220} \bmod 253=210$ $=12^{3} \bmod 253=M^{3} \bmod N_{A} \Rightarrow$ signature is authentic $!$
6. \# of keys for user $A=\varphi\left[\varphi\left(N_{A}\right)\right]=\varphi(220)=\varphi\left(2^{2 *} 5^{*} 11\right)=220(1-1 / 2)(1-1 / 5)(1-1 / 11)=80$ keys \# of keys for user $\mathrm{B}=\varphi\left[\varphi\left(\mathrm{N}_{\mathrm{B}}\right)\right]=\varphi(180)=\varphi\left(2^{2 *} 3^{2 *} 5\right)=180(1-1 / 2)(1-1 / 3)(1-1 / 5)=48$ keys

Solution 8-5 cont.:
7. The system is unsecure as If A or B sign M, as the public key of the sender allows anybody to reveal M, that is M is not kept secret
Signing an exponentiated version of M makes this kind of attack impossible, because
attacker will get a value that correspond to M^{3} mod N and there is no algorithm to compue
the Cubic root modulo a composite m without factoring N (as in Rabin-lock). That is, if the
prime factors p and q for N are not known then $M^{3} \bmod N$ is a one-way function $\left(N=p^{*} q\right.$) if p
and q are not known.

