Introduction to Cryptology

Tutorial-07
DH Key-Exchange/Sharing System

09.05.2023, v43

Design Summary for

A Basic Diffie-Hellmann (DH) Public Key Exchange System

In case that you have a prime

1. If you have a prime number p and you know how to factor $\mathrm{\varphi}(\mathrm{p})=\mathrm{p} 1 \mathrm{p} 2$. pt t then use the prime p to generate $\mathrm{GF}(\mathrm{p})$. 2. Find a primitive element α by checking that $\alpha^{p 1} \neq 1$ and $\alpha^{p p} \neq 1, \alpha^{p p p 2} \neq 1 \ldots$. and $\alpha^{p l} \neq 1 . \alpha$ is selected randoml Publish $G F$ (p) and α in a pubbic directory. The system is ready for use. The strength of your system is equal to the smallest prime factor of $\varphi(p)$.

In case that you do not have a prime:
Select a strong prime number p such that $p-1=2 q$ where q is a prime.
A possible procedure is to use Pocklington's Theorem to find such a prime:

- Select $\mathrm{N}=2 \boldsymbol{q}+1$ where q is a large prime. Check if the resulting N is prime using Pockington's Theorem If N is prime, take $p=N$ and generate $G F(p)$

2. Find a primitive element α in $\mathrm{GF}(\mathrm{p})$ by selecting any non-zero random value and checking if its order is $\mathrm{p}-1$. The order of any element in $\mathrm{GF}(\mathrm{p})$ is a divisor of $\mathrm{p}-1=2 \mathrm{q}$. That is the order can be either $1,2, q$ or $2 q$. If $\alpha^{2} \neq 1$ and $\alpha^{q} \neq 1$ then the order of α is $2 q$ and α is a primitive element. Repeat 2 until you get a primitive element.
3. Publish $\mathrm{GF}(\mathrm{p})$ and α in a public directory. The system is ready for use.

The procedure is simillar over the extension field $\operatorname{GF}\left(2^{m}\right)$!

2

Problem 7-1:
Find a primitive element α to set up a DH public-key exchange system using the prime
Generate DH common key $Z_{a b}$ for two users A and B having $X_{a}=3$ and $X_{b}=7$ as secret keys respectively.

Solution 7-1:
To find a primitive element $\boldsymbol{\alpha}$ in $\mathrm{GF}(43)$ we select randomly $\boldsymbol{\alpha}=3$ and check if it is a primitive element.
To find a primitive element α in $G F(43)$ we select randomly $\alpha=3$
3 is primitive if its order is a divisor of $\varphi(p)=43-1=42=2.3 .7$
The order of any element is one of these divisors: $1,2,3,7,6,14,21$ or 42
Compuing the order of 3 : $3^{2}=9 \neq 1,3^{3}=27 \neq 1,3^{6}=41=-2 \neq 1,3^{7}=-6 \neq 1,3^{14}=36 \neq 1$,
$3^{211}=-1 \neq 1=>3$ is a primitive element.
2.

Problem 7-2:

Generating one strong prime with the prime $23(\mathrm{~N}=2 * 23+1)$
Find a primitive element α to set up a DH public-key exchange system using the generated
strong pienum
$Z_{a b}$ for two users A and B having $X_{a}=24$ and $X_{b}=2$ as secret
What is the proba
is the probability that a randomly selected element is a primitive element?
Solution 7-2:
. Let us try to check if $\mathrm{N}=2 * 23+1=47$ is prime. Using Pocklington's Theorem:
If the following conditions hold then 47 is a prime:

1. $\operatorname{gcd}\left(2^{(47-1) 1 / 23}-1,47\right)=\operatorname{gcd}\left(2^{2}-1,47\right)=\operatorname{gcd}(3,47)=1 \Rightarrow>$ is true 2. $2^{47-1}=1 \bmod 47$ or in $Z_{47} \Rightarrow>$ is true 3. $\mathrm{F}=23>\sqrt{ } 47 \Rightarrow 23>6 \Rightarrow$ is true

To find a primitive element α in $\mathrm{GF}(47)$ we select randomly $\alpha=2$ and check if it is a
primitive element. 2 is primitive if its order is a divisor of $\varphi(p)$
The order of any element is one of the divisors: $1,2,23$ or 46
pinurn Computing the order of 2 : $2^{2}=4 \neq 1,2^{23}=48=1 \Rightarrow 2$ is not a primitive element ! Check another element!
\qquad

4

Solution 7-2 Cont.:

Computing the order of 5: Possible orders are $1,2,23$ or 46
$5^{1}=5 \neq 1,5^{2}=25 \neq 1,5^{23}=46=-1 \neq 1$ (all modulo 47)
Therefore, the order of 5 must be 46 and 5 is a primitive element.

Problem 7-3:
Select a irreducible polynomial and a primitive element α to set up a DH public-key exchange system over $\mathrm{GF}\left(\mathbf{2}^{10}\right)$
Generate $D H$ common key $Z_{a b}$ for two users A and B having $X_{a}=12$ and $X_{b}=4$ as secret keys respecively
What is the probability that a randomly selected element is a primitive element?

Solution 7-3:

1. Let us select the irreducible polynomial for $\mathrm{GF}\left(2^{10}\right)$ as $p(x)=x^{10}+x^{3}+1$

This polynomial is also primitive as its period is $1023=2^{10}-1$ (see table of irreducible polynomials). The order of x is $2^{10}-1$.
A possible primitive element is $\alpha=x=0000000010$ as its order is $2^{10}-1=1023=3 * 11 * 31$.
A possible primitive element is $\alpha=x=000000010$ as its order is $20-1=1023=3$
Possible elements orders in $\mathrm{GF}\left(2^{10}\right)$ are the divisors of $1023=1,3,11,31,33,93,341,1023$. A randomly selected element $\boldsymbol{\alpha}$ is primitive if: $\boldsymbol{\alpha}^{3} \neq 1$ and $\boldsymbol{\alpha}^{11} \neq 1$ and, $\boldsymbol{\alpha}^{31} \neq 1$ and $\boldsymbol{\alpha}^{33} \neq 1$ and $\boldsymbol{\alpha}^{93} \neq 1$, $\alpha^{341} \neq 1$.
Many other primitive elements can be selected as $\alpha^{\text {i }}$ for which $\operatorname{gcd}(1023, \mathrm{i})=1$, for example: $x^{10}=x^{3}+1=0000001001$ is a primitive elemen
$x^{20}=\left(x^{3}+1\right)^{2}=x^{6}+1=0001000001$ is also a primitive elemen

7

Problem 7-4:
A Diffie-Hellman (DH) public key exchange system uses $\mathrm{GF}\left(2^{6}\right)$ deploying the irreducible polynomial $P(x)=x^{6}+x^{3}+1$.

1. For $\beta=x$, compute β^{i} for $i=1$ to 10 . What is the multiplicative order of x ?
2. Which multipicative orders are possible for elements in $\mathrm{GF}\left(2^{6}\right)$?
3. Prove that the element $\delta=1+x=000011$ is a primitive element.
4. Compute the multiplicative order of δ^{14}
5. Use the element δ as a public element in the above $\operatorname{GF}\left(2^{6}\right)$ and compute the DH public key Y_{a} and Y_{b} and the shared secret key $Z_{a b}$ for users A and B having the secret keys $X_{a}=42$ and $X_{b}=14$.
Compute the binary vectors for Y_{a} and Y_{b} and $Z_{a b}$ by making use of the
following: $\delta^{7}=x^{5}+x^{2}, \delta^{21}=1+x^{3}$,
6. What is the probability of getting an element with order 21 if the element is picked up randomly from $\mathrm{GF}\left(2^{6}\right)$?
7. For any element a from $\operatorname{GF}\left(2^{6}\right)$, compute t for which $a^{-1}=a^{i}$

Compute then $x^{-1} \bmod p(x)$ using that result. (Hint make use of the results in 1) Verify your result.

Solution 7-4:

1. $P(x)=x^{6}+x^{3}+1=0 \quad \Rightarrow \quad x^{6}=x^{3}+1$
$\begin{aligned} x^{1} & =x \\ x^{2} & =x^{2}\end{aligned}$
$x^{2}=x^{2}$
$x^{3}=x^{3}$
$x^{3}=x^{3}$
$x^{4}=x^{4}$
$x^{5}=x^{5}$
$x^{6}=x^{3}+1$
$x^{7}=x^{4}+x$
$x^{8}=x^{5}+x^{2}$
$x^{9}=x^{6}+x^{3}=x^{3}+x^{3}+1=1$
$x^{10}=x \quad \Rightarrow \operatorname{ord}(x)=9$
2. Possible orders are the divisors of $2^{6}-1=63$

Divisors of 63 are: $\quad 1,3,7,9,21$ and 63
3. $(x+1)^{1}=x+1 \neq 1$
$(x+1)^{3}=(x+1)^{2} \cdot(x+1)=\left(x^{2}+1\right) \cdot(x+1)=x^{3}+x^{2}+x+1 \neq 1$
$(x+1)^{7}=\left((x+1)^{3}\right)^{2} \cdot(x+1)=\left(x^{3}+x^{2}+x+1\right)^{2} \cdot(x+1)=\left(x^{6}+x^{4}+x^{2}+1\right) \cdot(x+1)$
$=x^{7}+x^{5}+x^{3}+x+x^{6}+x^{4}+x^{2}+1=x^{4}+x+x^{5}+x^{3}+x+x^{3}+1+x^{4}+x^{2}+1=x^{5}+x^{2} \neq 1$
$(x+1)^{9}=(x+1)^{7} \cdot(x+1)^{2}=\left(x^{5}+x^{2}\right) \cdot\left(x^{2}+1\right)=x^{7}+x^{4}+x^{5}+x^{2}=x^{4}+x+x^{4}+x^{5}+x^{2}=x^{5}+x^{2}+x \neq 1$
$(x+1)^{21}=\left((x+1)^{7}\right)^{3}=\left(x^{5}+x^{2}\right)^{3}=\left(x^{5}+x^{2}\right)^{2} \cdot\left(x^{5}+x^{2}\right)=\left(x^{10}+x^{4}\right) \cdot\left(x^{5}+x^{2}\right)=\left(x+x^{4}\right) \cdot\left(x^{5}+x^{2}\right)$ $=x^{6}+x^{3}+x^{9}+x^{6}=x^{6}+x^{3}+x^{6}+x^{3}+x^{6}=x^{3}+1 \neq 1 \quad \Rightarrow \operatorname{ord}(x+1)=63$

Solution 7-4 Cont.:

4. $\operatorname{ord}\left(\delta^{4}\right)=\frac{\operatorname{crd}(\delta)}{\operatorname{gcd}(\operatorname{sord}(\delta), i)}=\frac{63}{\operatorname{gcd}(6,3,14)}=\frac{63}{7}=9$

10

```
Solution 7-4 Cont.:
    7. For any element t, a'1 mode 63 = a'1+63 = a'2 =at }->\textrm{t}=6
    x - = x }\mp@subsup{x}{}{62}=(\mp@subsup{x}{}{9}\mp@subsup{)}{}{6}\mp@subsup{x}{}{8}=(1)\mp@subsup{)}{}{6}\mp@subsup{x}{}{8}=\mp@subsup{x}{}{8
    x-1 = x = x }\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2
    Verification:
    x. x-1 = x 秋 = x = = (see 1
```


Homework:

A Diffie-Hellman public-key exchange system is setup over $\mathrm{GF}\left(2^{4}\right)$ using the primitive polynomial $P(x)=x^{4}+x+1$
Compute all exponents of x up to 15 and state the corresponding binary patterns Which one of the following elements is primitive? 0011, 1111. Select it as the primitive element for DH public directory
What is the probability that a randomly selected element is primitive?
4. Compute $D H$ common key for two users A and B having $X a=11$ and $X b=7$ as secret keys respectively.
(Final exam 2004)

