Introduction to Cryptology

Tutorial-06
Secret-Key Ciphers Stream Ciphers: Design Principles

03.05.2023, v43

A Template for Designing a Running Key Generators Non-linear Combination of LFSR Sequences

Problem 6-1:

Construct a linear feedback shift register using the connection Polynomial
$C(D)=D^{5}+D^{2}+1$. The polynomial $C(D)$ is irreducible.

1. Start the constructed register with the initial state 10111 and generate the first 5 bits of its output sequence.
2. Which possible length can the sequence period take?
3. Find the period of the resulting sequence.
4. If $\mathrm{C}(\mathrm{D})$ is not known to an external attacker. How many consecutive sequence bits are
required to generate the rest of this sequence?
5. How much is the linear complexity of that sequence?

Solution 6-1:

2.C(D) is irreducible with period p, where p should divide $2^{5-1}=31$.

The divisors of 31 are 1 or 31 . Thus the period can be 1 or 31 .
3. As the period is not (see the sequence in 1), it should be $31 \rightarrow>=31$ q.e.d
4. If we apply Massey-Berlekamp algorithm using only $2 \mathrm{~L}=10$ consecutive bits are required to find $\mathrm{C}(\mathrm{D})$.
5. Linear complexity is the length of the shortest linear feedback shift register LFSR which generates the sequence. Thus the linear complexity of our sequence is $L=5$.

Problem 6-2:

Construct a linear feedback shift register using the connection Polynomial
$C(D)=D^{6}+D^{4}+D^{2}+D+1$. The polynomial $C(D)$ is ireducible.

1. Start the constructed register with the initial state 101111 and generate the first 5 bits of its output sequence
Which possible length can the sequence period take?
2. Find the period of the resulting sequence.
3. If $\mathrm{C}(\mathrm{D})$ is not known to an external attacker. How many consecutive sequence bits are
required to generate the rest of this sequence?
4. How much is the linear complexity of that sequence?

Problem 6-3: Stream Cipher Design

1. Define the connection polynomial for the running key generator shown such that it produces a maximum length output sequence. Compute the length of the output sequence.
2. Compute the number of possible polynomials which can produce such sequences

Define possible functions. 1 and 12 sing logical gales such that the output sequence S shows a maximum linear complexity. Write the function of the output sequence in terms of the register states Compute the linear complexity of the output sequence S.

Use the factorization table below:

Solution 6-3:

1. A possible connection polynomia

A possible connection polynomial
is the following primitive polynomial from is the following primitive polynom
the irreducible polynomial table
the irreducible polynomia
$C(D)=1000001010011$
$=D^{12}+D^{6}+D^{4}+D+1$ (sht posmonnial in the ist) Periode $2^{\mathrm{L}}-1=2^{12}-1=4095$

2. Number of existing primitive polynomials of degree L is: $\frac{\varphi\left(2^{L}-1\right)}{L}$
for $L=12$, number of primitive polynomials is:
$\varphi\left(2^{12}-1\right) / 12=\varphi(4095) / 12=\varphi\left(5^{*} 3^{2 *} 7^{*} 13\right) / 12$
$=4095(1-1 / 5)(1-1 / 3)(1-1 / 7)(1-1 / 13) / 12$
$=1728 / 12=144$ possible polynomials (or possible PN-Sequences)
3. Selecting $\mathrm{m}=12 / 2$ for highest linear complexity $\vec{S}=S_{9} S_{10} S_{11}+S_{7} S_{6} S_{5} S_{4} S_{3} S_{2}+S_{1}$
4. The linear complexity is $L(\vec{S}) \geq\binom{ 12}{6}-(12-6)=\frac{12!}{6!\cdot(12-6)!}-6=924-6=918$ bits

