

Problem 4-5: Elements order over an extension field Compute the exponents of the element x from 1 to 16 and 31 over $\operatorname{GF}\left(2^{5}\right)$ which is generated by the irreducible polynomial $P(x)=\left(x^{5}+x^{2}+1\right)$	
Solution 4-5:	
If $\mathrm{P}(\mathrm{x})=\mathrm{x}^{5}+\mathrm{x}^{2}+1$ is the modulus then it is equal to zero	
That is $x^{5}+x^{2}+1=0$ Thus $x^{5}=x^{2}+1$	
Let us compute the exponents of x over this field:	
$\mathrm{x}^{1}=\mathrm{x}$	$\bmod \left(\mathrm{x}^{5}+\mathrm{x}^{2}+1\right)$
$\mathrm{x}^{2}=\mathrm{x}^{2}$	$\bmod \left(x^{5}+x^{2}+1\right)$
$\mathrm{x}^{3}=\mathrm{x}^{3}$	$\bmod \left(x^{5}+x^{2}+1\right)$
$\mathrm{x}^{4}=\mathrm{x}^{4}$	$\bmod \left(x^{5}+x^{2}+1\right)$
$\mathrm{x}^{5}=\mathrm{x}^{2}+1$	$\bmod \left(x^{5}+x^{2}+1\right)$
$\mathrm{x}^{6}=\mathrm{x}\left(\mathrm{x}^{2}+1\right)=\mathrm{x}^{3}+\mathrm{x}$	$\bmod \left(x^{5}+x^{2}+1\right)$
$\mathrm{x}^{7}=\mathrm{x}\left(\mathrm{x}^{3}+\mathrm{x}\right)=\mathrm{x}^{4}+\mathrm{x}^{2}$	$\bmod \left(x^{5}+x^{2}+1\right)$
$\mathrm{x}^{8}=\mathrm{x}^{5}+\mathrm{x}^{3}=\mathrm{x}^{3}+\mathrm{x}^{2}+1$	$\bmod \left(\mathrm{x}^{5}+\mathrm{x}^{2}+1\right)$
$\mathrm{x}^{9}=\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}$	$\bmod \left(\mathrm{x}^{5}+\mathrm{x}^{2}+1\right)$
$\mathrm{x}^{10}=\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{2}=\mathrm{x}^{4}+\mathrm{x}^{2}+\mathrm{x}^{2}+1=\mathrm{x}^{4}+1$	$\bmod \left(x^{5}+x^{2}+1\right)$
$\mathrm{x}^{11}=\mathrm{x}^{5}+x=\mathrm{x}^{2}+\mathrm{x}+1$	mod ($\mathrm{x}^{5}+\mathrm{x}^{2}+1$)
$\mathrm{x}^{12}=\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}$	$\bmod \left(x^{5}+\mathrm{x}^{2}+1\right)$

Solution 4-6 cont.
A circuit which multiplies any serial data stream $I(x)$ by the inverse of the polynomial $b(x)=x+$
1 that is $b(x)^{-1}=H(x)=x^{3}+x^{4}$ modulo the irreducible polynomial $g(x)=x^{5}+x^{3}+1$

Problem 4-8: ad-hoc Class exercise, Online-Example: ad-hoc Class exercise Compute the multiplicative inverse of $x^{4}+x^{2}+1$ modulo $x^{5}+x+1$
Select a polynomial as a modulus for $\mathbf{G F}\left(2^{2}\right)$
Compute a primitive element
Win are the possible multipicative orders in GF(2)
How many elements do exist from each possible order
Compute a primitive element
Compute other 5 primitive elements
Compute one element for each possible multiplicative order
Solution 4-7:

$\mathrm{P}_{1}(\mathrm{x})$	$\mathrm{P}_{2}(\mathrm{x})$	B1(x)	B2(x)	$Q(x)$	$\mathrm{R}(\mathrm{x})$
$\mathrm{X}^{5}+\mathrm{x}+1$	$\mathrm{x}^{4}+\mathrm{x}^{2}+1$	0	1	x	$x^{3}+1$
$\mathrm{x}^{4}+\mathrm{x}^{2}+1$	$\mathrm{X}^{3}+1$	1	x	x	$x^{2}+x+1$
$\mathrm{X}^{3}+1$	$x^{2}+X^{+1}$	x	$x^{2}+1$	$x+1$	0

As gcd $\left[P_{1}(x), P_{2}(x)\right] \neq 1 \Rightarrow$ a multiplicative inverse do not exist.

Trying another $P_{2}(x)=x^{2}+1$

$P_{1}(x)$	$P_{2}(x)$	$B 1(x)$	$B 2(x)$	$Q(x)$	$R(x)$
$X^{5}+x+1$	$x^{2}+1$	0	1	$x^{3}+x$	1
$x^{2}+1$	1	1	$x^{3}+x$	$x^{2}+1$	0

As $\operatorname{gcd}\left[P_{1}(x), P_{2}(x)\right]=1, \Rightarrow$ the multiplicative inverse is $P_{2}(x)^{-1}=B 2(x)=x^{3}+x$
Check: $\left(x^{2}+1\right)\left(x^{3}+x\right)=x^{5}+x^{3}+x^{3}+x=x+1+x=1$ q.e.d

```
Online-Example: ad-hoc Class exercise
Compute the multiplicative inverse of \(x^{2}+1\) modulo \(x^{7}+x^{6}+1\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline P1(x) & P2(x) & B1(x) & B2(x) & \(Q(x)\) & R(x) \\
\hline \(x^{7}+x^{6}+1\) & \(x^{2}+1\) & 0 & 1 & \[
\begin{aligned}
& x^{5}+x^{4}+x^{3} \\
& +x^{2}+x+1
\end{aligned}
\] & x \\
\hline \(x^{2}+1\) & x & 1 & \(x^{5}+x^{4}+x^{3}+x^{2}+x+1\) & x & 1 \\
\hline x & 1 & \(x^{5}+x^{4}+x^{3}+x^{2}+x+1\) & \(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\) & x & 0 \\
\hline
\end{tabular}
Check: \(\left(x^{2}+1\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)\)
\(=x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\)
\[
\begin{aligned}
x^{7} & =x^{6}+1 \\
x^{8} & =x^{7}+x=x^{6}+x+1
\end{aligned}
\]
\(=x^{6}+x+1+x^{6}+1+x+1\)
\(=x^{6}+x\)
\(=1\)
```

