Introduction to Cryptology

Summary: Primality check and generating primes

> Fermat 's Theorem to check primality:
> If for any b, where $1 \leq b<p$ the following holds $b^{p-1} \equiv \mathbf{1} \bmod p$,
> then p is a pseudo prime to the base b

Find Provably-Primes Pocklington's Theorem (1916)
Tutorial-3
Mathematical Background: Primes and (GF)
22.03.2023, v40

Pocklington

Let $n=1+F R$ and let $F=q_{1} \ldots q_{t}$ be the distinct prime factors of F
If there exists a number a such that all the following three conditions hold,

1. $\mathrm{a}^{\mathrm{n}-1} \equiv 1(\bmod \mathrm{n})$
2. for all $q_{i} s$ where $i=1 . . t, \quad \operatorname{gcd}\left(a^{(n-1) / q i}-1, n\right)=1$,
3. if $F>\sqrt{ } n$,
then \mathbf{n} is prime.
If n is prime, the probability that a randomly selected \mathbf{a} which satisfies Pocklington's Theorem is $(1-\Sigma 1 /$ qi)

```
Problem 3-1: Primality test
Prove that the following numbers
    17, 13,31
are pseudoprimes to the bases 2 and 3
Fermat 's Theorem to check primality:
If for any b, where 1 
then }p\mathrm{ is a pseudoprime to the base b
Solution 3-1:
277-1}=1 mod 17
243-1}=1\quad\operatorname{mod}1
231-1}\equiv1 mod 31
3 17-1 }\equiv1 mod 17
3 13-1}=1 mod 13
3 31-1 }=1 mod 31
```


Problem 3-2: Generating definitely prime numbers

To set up a cryptographic system the we used the following known prime numbers for
generating larger primes:

1. Using Pocklington's Theorem the following number was constructed $n=4^{\star} 7+1=29$ Check if $\mathrm{n}=29$ is for sure a prime.
2. Generate $\operatorname{GF}(29)$ and find 3 primitive elements.

Solution 3-2:

$\mathrm{n}=4^{*}(7)+1=29, \mathrm{~F}=7$ and $\mathrm{R}=4$
29 is prime if the following conditions all hold

1. $\operatorname{gcd}\left(2^{(29,1) / 7}-1,29\right)=\operatorname{gcd}\left(2^{4}-1,29\right)=\operatorname{gcd}(15,29)=1$ is true
2. $2^{29 \cdot 1}=1 \bmod 29$ or $\mathrm{in} \mathrm{Z}_{29}$ is true

As all conditions hold, 29 is for sure a prim
2. The possible multiplicative orders in $\mathrm{GF}(29)$ are the divisors of $\phi(29)=29-1=28$, namely $1,2,4,7,14,28$ Number of the primitive elements with the highest order order 28 is $\phi(28)=\phi\left(2^{2} \times 7\right)=28(1-1 / 2)(1-1 / 7)=12$ Order of 2 : $2^{1}=2 \neq 1,2^{2}=4 \neq 1,2^{4}=16 \neq 1,2^{7}=2^{*} 64=2^{*}-6=-12 \neq 1,2^{14}=(-12)^{2}=144=-1 \neq 1 \Rightarrow$ order of 2 is 28


```
Problem 3-3: Generating provably prime numbers (online exercise)
To set up a cryptographic system the we used the following known prime numbers for generating larger primes:
2, 3, 7, 11, 13, 17
Using Pocklington's Theorem the following number was constructed \(n=2 \times(3 \times 17)+1=103\) Check if \(\mathrm{n}=103\) is for sure a prime
2. Generate GF(103) and find 5 primitive elements
```


Solution 3-3:

```
\(n=2 *(3.17)+1=103, F=3.17=51\) and \(R=2\)
103 is prime if the following conditions all hold: select \(a=2\) for Pocklington's theorem 1. \(\operatorname{gcd}(22(103-1) 1 / 1 / 1,1,103)=\operatorname{gcd}\left(2^{6}-1,103\right)=1\) is true
3. \(\mathrm{F}=7>\sqrt{103} \Rightarrow 51>10 .-\) is true, As all conditions hold, 103 is for sure a prime
2. The possible multipicative orders in \(\mathrm{GF}(103)\) are the divisors of \(\phi(103)=103-1=102=1 \times 2 \times 3 \times 17\) (from (1) ) namely \(1,2,3,6,17,34,51,102\)
Number of the primitive elements with the highest order 102 is \(\phi(102)=\phi(2 \times 3 \times 17)=(2-1)(3-1(17-1)=32\)
Order of 2. \(2^{2}=2 \neq 1,2^{2}=4 \neq 1,2^{3}=8 \neq 1,2^{6}=64 \neq 1,2^{17}=56 \neq 1,2^{34}=46 \neq 1,2^{51}=1,=\Rightarrow\) order of 2 is 51
Order of : \(5^{1}=5 \neq 1,5^{2}=25 \neq 1,5^{3}=22 \neq 1,5^{5}=72 \neq 1,5^{7}=57 \neq 1,2^{34}=56 \neq 1,5^{51}=102 \neq 1 \Rightarrow\) order of 5 in 1025 is a primitive elemen
(Notice: The primitive elements are all 5 for which gcod(102,i) \(=1\) namely: \(5^{51}, 55,57,5^{51,}, 5^{13} \ldots . .=5,35,51,48,67\).
```

