Introduction to Cryptology

Tutorial-3 Mathematical Background: Primes and (GF)

22.03.2023, v40

then use Pocklington's theorem to get larger and larger primes															anc	l la	rge	r pi	rim	es
					-		1.5		Data	nes u		440	-				-	-		
												440	3							
79	- 83	- 89	97	11	13	17	19	113	29	31	37	41	43	47	53	59	61	67	71	73
191	193	197	199	211	223	227	229	213	239	241	251	257	263	269	271	277	281	283	293	307
311	313	317	331	337	347	349	353	359	167	373	379	383	389	397	401	409	419	421	431	433
439	443	449	457	461	463	467	479	487	491	499	503	509	521	523	541	547	557	563	569	571
577	587	593	599	601	607	613	617	619	631	641	643	647	653	659	661	673	677	683	691	701
709	719	727	733	739	743	751	757	761	769	773	787	797	809	\$11	821	823	827	829	839	851
857	859	\$63	\$77	881	883	887	907	911	919	929	937	941	947	953	967	971	977	983	991	997
1009	1013	1019	1021	1031	1033	1039	1049	1051	1061	1063	1059	1087	1091	1093	1097	1103	1109	1117	1123	1129
1151	1153	1163	1171	1181	1187	1193	1201	1213	1217	1223	1229	1231	1237	1249	1259	1277	1279	1283	1289	1291
1297	1301	1303	1307	1319	1321	1327	1361	1367	1373	1381	1399	1409	1423	1427	1429	1433	1439	1447	1451	1453
1459	1471	1481	1483	1487	1489	1493	1499	1511	1523	1531	1543	1549	1553	1559	1567	1571	1579	1583	1597	1601
1607	1609	1613	1619	1621	1627	1637	1657	1663	1667	1669	1693	1697	1699	1709	1721	1723	1733	1741	1747	1753
1759	1777	1783	1787	1789	1801	1811	1823	1831	1847	1861	1867	1871	1873	1877	1879	1889	1901	1907	1913	1931
1933	1949	1951	1973	1979	1987	1993	1997	1999	2003	2011	2017	2027	2029	2039	2053	2063	2069	2081	2083	2087
2089	2099	2111	2113	2129	2131	2137	2141	2143	2153	2161	2179	2203	2207	2213	2221	2237	2239	2243	2251	2267
2269	2273	2281	2287	2293	2297	2309	2311	2333	2339	2341	2347	2351	2357	2371	2377	2381	2383	2389	2393	2399
2411	2417	2423	2437	2441	2447	2459	2467	2473	2477	2503	2521	2531	2539	2543	2549	2551	2557	2579	2591	2593
2609	2617	2621	2633	2647	2657	2659	2663	2671	2677	2683	2687	2689 2837	2693	2699	2707	2711	2713	2719	2729	2731
2909	2917	2027	2019	1951	2957	2961	2969	2801	2803	3001	3011	3019	2843 3023	3037	2857	2861	2879	2887	2897	2903
3089	3100	3119	3121	4933	1141	2963	2969	2971	3187	3191	3203	3209	3023	3221	3041 3229	3049 3251	3061 3253	3067	3079	3083
3299	3301	3307	3315	3319	3323	1129	3131	3343	3347	3359	3361	3371	3373	3389	3391	3407	3413	3433	3449	3457
3461	3463	1467	3469	1491	1499	3511	3517	3527	3529	3531	1510	3541	3547	3557	3559	3571	1581	1591	1501	3607
3613	3517	3621	3611	1637	3643	1659	3671	3673	3677	3691	3697	3701	3709	3719	3727	3733	3719	3761	1767	\$769
3779	1793	3797	3803	3821	3823	3813	3847	3851	3853	3861	3877	3881	3889	3907	3911	1917	1919	3032	3/0/	1011
3943	3947	3967	3089	1001	4003	4007	4013	4019	4021	4027	4049	4051	4057	4071	4079	4091	4093	40.99	4111	4127
4129	4133	4139	4153	4157	4159	4177	4201	4211	4217	4219	4229	4231	4241	4241	42.53	42.59	4261	4271	4273	4283
4289	4297	4327	4337	4139	4149	4357	4163	4373	4391	4397	4409	4471	4423	4441	4447	4451	4457	4462		41.0.5

Problem 3-2: Generating definitely prime numbers

To set up a cryptographic system the we used the following known prime numbers for To set up a cryptographic - , generating larger primes: 2, 3, 7, 11, 13

- Using Pocklington's Theorem the following number was constructed n = 4*7+1 = 29. 1.
- Check if n = 29 is for sure a prime. 2. Generate GF(29) and find 3 primitive elements.

Page : 5

Page : 1

