

1.	Which additive orders are possible in GF(41)
2.	How many invertible element under multiplication do exist in GF(41) (number of units in GF(41))?
3.	Which multiplicative orders are possible in GF(41)
4.	Compute the number of elements from each order
5.	Compute the order of all elements in GF(41) using the primitive element 7
Soli	ution 1:
1.	Additive group = (0,1,2,, 40)
	The smallest positive solution of the congruence ax = 0 (mod n) is called the additive order of a modulo n
	The possible additive orders in GF(41) are the divisors of order of the additive group, namely 1, 41
	The additive order of element b in GF(41):
	for b ≠ 0 ⇒ order of b is 41
	for b = 0 => order of b is 1
2.	Number of invertible elements (units) is Euler function (41) = 41-1 = 40
3.	The possible multiplicative orders in GF(41) are the divisors of $\phi(41)=40=2.2.2.5$, namely 1, 2, 4, 5, 8, 10, 20,40
4.	Number of elements with order 1 is $\phi(1) = 1$
	Number of elements with order 2 is $\phi(2) = (2-1) = 1$
	Number of elements with order 4 is $\phi(4) = 4(1-1/2) = 2$
	Number of elements with order 5 is $\phi(5) = (5-1) = 4$
	Number of elements with order 8 is $\phi(8) = \phi(8) = \phi(2^3) = 8 (1-1/2) = 4$ Number of elements with order 10 is $\phi(10) = \phi(2x5) = (2-1)(5-1) = 4$
	Number of elements with order 10 is $\phi(10) = \phi(2x3) = (2-1)(3-1) = 4$ Number of elements with order 20 is $\phi(20) = \phi(2x2x5) = 20(1-1/2)(1-1/5) = 8$
	Number of elements with order 20 is $\phi(20) = \phi(2x2x3) = 20(1-1/2)(1-1/3) = 3$ Number of elements with order 40 is $\phi(40) = \phi(2x2x2x5) = 40(1-1/2)(1-1/5) = 16$
	$\psi(1) = \psi(1) = $
	chnical University of Braunschweig

5.	<u>Order of 7:</u> $7^1 = 7 \neq 1$, $7^2 = 8 \neq 1$, $7^4 = 8^2 = 23 \neq 1$, $7^5 = 7x(23) = 38 \neq 1$, $7^6 = 23^2 = 37$, $7^{10} = 38^2 = 9 \neq 1$, $7^{20} = 9^2 = 40$
	=> order of 7 is 40, 7 is a primitive element, which can generate the whole group. If the order of α , is k then Ord (α^i) = k / gcd (i,k).
	By selecting i=40 we get gcd(40,i)=40. Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 40= 1
	=> 7 ⁴⁰ or 1 are 1 element having order 1
	By selecting i=20 we get gcd(40,i)=20. Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 20= 2 => 7 ²⁰ or 40 are 1 element having order 2
	=> /** or 40 are 1 element having order 2 By selecting i=10,30 we get gcd(40,i)=10 Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 10= 4
	=> 7^{10} , 7^{30} or 9, 32 are 2 elements having order 4
	By selecting i=8, 16, 24, 32 we get gcd(40,i)=8. Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 8= 5
	=> 7 ⁸ , 7 ¹⁶ , 7 ²⁴ , 7 ³² or 37, 16, 18, 10 are 4 elements having order 5
	By selecting i= 5, 15, 25, 35 we get gcd(40,i)=5 Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 5= 8
	=> 7 ⁵ , 7 ¹⁵ , 7 ²⁵ , 7 ³⁵ or 38, 14, 3, 27 are 4 elements having order 8
	By selecting i=4, 12, 28, 36 we get gcd(40,i)=4 Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 4= 10
	=> 7 ⁴ , 7 ¹² , 7 ²⁸ , 7 ³⁶ or 23, 31, 4, 25 are 4 elements having order 10
	By selecting i=2, 6, 14, 18, 22, 26, 34, 38 we get gcd(40,i)=2 Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 2= 20
	=> 7 ² , 7 ⁶ , 7 ¹⁴ , 7 ¹⁸ , 7 ²² , 7 ²⁶ , 7 ³⁴ , 7 ³⁸ or 8, 20, 2, 5, 33, 21, 39, 36 are 8 elements having order 20
	By selecting i= 1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39
	we get gcd(40,i)=1. Ord (7 ⁱ) = 40 / gcd (i,40)= 40/ 1= 40 > 7 ¹ , 7 ³ , 7 ⁷ , 7 ⁹ , 7 ¹¹ , 7 ¹³ , 7 ¹⁷ , 7 ¹⁹ , 7 ²¹ , 7 ²³ , 7 ²⁷ , 7 ²⁹ , 7 ³¹ , 7 ³³ , 7 ³⁷ , 7 ³⁹ or
	7, 15, 17, 13, 22, 12, 30, 35, 34, 26, 24, 28, 19, 29, 11, 6 are 16 elements having order 40

i	7^(i)	gcd(40,i)	Ord(7^i)=40/gcd(40,i)	i	7^(i)	gcd(40,i)	Ord(7^i)=40/gcd(40,i
1	7	1	40	21	34	1	40
2	8	2	20	22	33	2	20
3	15	1	40	23	26	1	40
4	23	4	10	24	18	8	5
5	38	5	8	25	3	5	8
6	20	2	20	26	21	2	20
7	17	1	40	27	24	1	40
8	37	8	5	28	4	4	10
9	13	1	40	29	28	1	40
10	9	10	4	30	32	10	4
11	22	1	40	31	19	1	40
12	31	4	10	32	10	8	5
13	12	1	40	33	29	1	40
14	2	2	20	34	39	2	20
15	14	5	8	35	27	5	8
16	16	8	5	36	25	4	10
17	30	1	40	37	11	1	40
18	5	2	20	38	36	2	20
19	35	1	40	39	6	1	40
20	40	20	2	40	1	40	1

1.	How many invertible element under multiplication do e	xist ir	n Z ₅₆ (number of units in Z ₅₆)?
2.	Which multiplicative orders are possible in Z [*] ₅₆		
3.	Compute the order of the elements of Z [*] ₅₆		
4.	Compute the order of many non-unit elements		
Sol	lution 2:		
1.	Number of invertible elements (units) is Euler function (56) =	• d (2 ³	x7) =56(1-1/2)(1-1/7) = 24
	The 24 units in Z ₁₀ are: u=1,3,5,9,11,13,15,17,19,23,25,27,29,		
2.	The possible orders in Z _{se} are the divisors of $\lambda(56) = \text{Icm} [\lambda(100)]$		
	=> the divisors of 6 are 1, 2, 3, 6		
3.	Order of 3: 3 ¹ = 3≠ 1, 3 ² = 6≠ 1, 3 ³ = 27≠ 1	=>	order of 3 is 6
	Order of 5: 5 ¹ = 5≠ 1, 5 ² = 25≠ 1, 5 ³ = 13≠ 1	=>	order of 5 is 6
	Order of 9: 91 = 9≠ 1, 92 = 25≠ 1, 93 = 25x9= 1		
	Order of 11: 11 ¹ = 11≠ 1, 11 ² = 9≠ 1, 11 ³ = 9x11=43≠ 1	=>	order of 11 is 6
	Order of 13: 13 ¹ = 13≠ 1, 13 ² = 1	=>	order of 13 is 2
	Order of 15: 15 ¹ = 15≠ 1, 15 ² = 1		order of 15 is 2
	Order of 17: $17^1 = 17 \neq 1$, $17^2 = 9 \neq 1$, $17^3 = 17x9=41 \neq 1$		
	<u>Order of 19</u> : $19^1 = 19 \neq 1$, $19^2 = 25 \neq 1$, $19^3 = 25x19=27 \neq 1$		
			order of 23 is 6
	Order of 25: 25 ¹ = 25≠ 1, 25 ² = 9 ≠ 1, 25 ³ = 9x25= 1		order of 25 is 3
	Order of 27: 27 ¹ = 27≠ 1, 27 ² = 1		order of 27 is 2
	Order of 29: 29 ¹ = 29≠ 1, 29 ² = 1		order of 29 is 2
	Order of 31: 31 ¹ = 31≠ 1, 31 ² = 9≠ 1, 31 ³ = 9x31=55≠ 1	=>	order of 31 is 6
Т	echnical University of Braunschweig		

n	n^1	n^2	n^3	n^6	Ord(n)
1	1				1
3	3	9	27	1	6
5	5	25	13	1	6
9	9	25	1		3
11	11	9	43	1	6
13	13	1			2
15	15	1			2
17	17	9	41	1	6
19	19	25	27	1	6
23	23	25	15	1	6
25	25	9	1		3
27	27	1			2
29	29	1			2
31	31	9	55	1	6
33	33	25	41	1	6
37	37	25	29	1	6
39	39	9	15	1	6
41	41	1			2
43	43	1			2
45	45	9	13	1	6
47	47	25	55	1	6
51	51	25	43	1	6
53	53	9	29	1	6
55	55	1			2

 Order of 27: 27¹ = 27 ≠ 1, 27² = 25 ≠ 1, 27⁴ = 17 ≠ 1 <u>Order of 29:</u> 29¹ = 29 ≠ 1, 29² = 9 ≠ 1, 29⁴ = 17 ≠ 1 <u>Order of 31:</u> 31¹ = 31 ≠ 1, 31² = 1 	
ternativ:	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	cd (i,8)= 8 > order of 5 is 8 order of 7 is 4

n	n^1	n^2	n^4	n^ <mark>8</mark>	Ord(n)
1	1				1
3	3	9	17	1	8
5	5	25	17	1	8
7	7	17	1		4
9	9	17	1		4
11	11	25	17	1	8
13	13	9	17	1	8
15	15	1			2
17	17	1			2
19	19	9	17	1	8
21	21	25	17	1	8
23	23	17	1		4
25	25	17	1		4
27	27	25	17	1	8
29	29	9	17	1	8
31	31	1			2

N	\underline{vtice} : order 30 as a non unit is by definition = ∞	
	30 ³⁰ = 0 , 30 ³¹ = 0	
I	errent 30 is not invertible. Exponents of 30: $30^{1}=30$, $30^{2}=4$, $30^{3}=24$, $30^{4}=16$, $30^{5}=0$, $30^{6}=0$, $30^{7}=0$),
V	<u>vice</u> : order 4 as a non unit is by definition = ∞	
	$4^{30} = 0, 4^{31} = 0$	
8	lement 4 is not invertible. Exponents of 4: 4 ¹ =4, 4 ² =16, 4 ³ =0, 4 ⁴ =0, 4 ⁵ =0, 4 ⁶ =0, 4 ⁷ =0, 4 ⁸ =0,	
ľ	<u>utice</u> : order 2 as a non unit is by definition = ∞	
	2 ³⁰ = 0, 2 ³¹ = 0	
4.	Element 2 is not invertible. Exponents of 2: 2 ¹ =2, 2 ² =4, 2 ³ =8, 2 ⁴ =16, 2 ⁵ =0, 2 ⁶ =0, 2 ⁷ =0, 2 ⁸ =0,	
_	ution 3:	

	1	2	3	4	5	6	7	8	9	10	11	12	13	15	16-31
n	n^1	n^2	n^3	n^4	n^5	n^6	n^7	n^8	n^9	n^10	n^11	n^12	n^13	n^15	n^16-n^31
2	2	4	8	16	0	0	0	0	0	0	0	0	0	0	0
4	4	16	0	0	0	0	0	0	0	0	0	0	0	0	0
6	6	4	24	16	0	0	0	0	0	0	0	0	0	0	0
8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	10	4	8	16	0	0	0	0	0	0	0	0	0	0	0
12	12	16	0	0	0	0	0	0	0	0	0	0	0	0	0
14	14	4	24	16	0	0	0	0	0	0	0	0	0	0	0
16	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	18	4	8	16	0	0	0	0	0	0	0	0	0	0	0
20	20	16	0	0	0	0	0	0	0	0	0	0	0	0	0
22	22	4	24	16	0	0	0	0	0	0	0	0	0	0	0
24	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	26	4	8	16	0	0	0	0	0	0	0	0	0	0	0
28	28	16	0	0	0	0	0	0	0	0	0	0	0	0	0
30	30	4	24	16	0	0	0	0	0	0	0	0	0	0	0

1. 2.	How many invertible element under multiplication Which multiplicative orders are possible in Z_n^*	on do	exist in Z_n (number of units in Z_n) ?
3. 4.	Compute the order of the elements of Z [*] _n Compute the order of many non-unit elements		
Sc	blution 4:		
F •			
1	r t=5, n = 2 ^t +1 = 33 Number of invertible elements (units) is Euler function	\$ (33)	$= \mathbf{a}(3x11) = 2x10 = 20$
2.	The 20 units in Z ₃₃ are: u=1,2,4,5,7,8,10,13,14,16,17,1		
	The possible multiplicative orders in Z 33 are the divis namely 1, 2, 5, 10		
3.	Order of 2: 2 ¹ = 2≠ 1, 2 ² = 4≠ 1, 2 ⁵ = 32 ≠1		order of 2 is 10
	Order of 4: 4 ¹ = 4≠ 1, 4 ² = 16≠ 1, 4 ⁵ = 1		order of 4 is 5
	Order of 5: 5 ¹ = 5≠ 1, 5 ² = 25≠ 1, 5 ⁵ = 23 ≠1		order of 5 is 10
	Order of 7: 7 ¹ = 7≠ 1, 7 ² = 16≠ 1, 7 ⁵ = 10 ≠ 1	=>	order of 7 is 10
	Order of 8: 8 ¹ = 8≠ 1, 8 ² = 31≠ 1, 8 ⁵ = 32≠1		order of 8 is 10
	Order of 10: 10 ¹ = 10≠ 1, 10 ² = 1		order of 10 is 2
	Order of 13: 13 ¹ = 13≠ 1, 13 ² = 4 ≠1, 13 ⁵ = 10≠1		order of 13 is 10
	<u>Order of 14:</u> $14^1 = 14 \neq 1$, $14^2 = 31 \neq 1$, $14^5 = 23 \neq 1$		order of 14 is 10
	Order of 16: 16 ¹ = 16≠ 1, 16 ² = 25≠ 1, 16 ⁵ = 1	- =>	order of 16 is 5

	y_1 tre4, n= n=2 ⁴ .1=15 Number of inversite dements (units) is Euler function $φ_1(5) = φ_2(3.5) = 2x4 = 8$ The 8 units in $Z_{1,2}$ are: u=1,2,4,2,3,11,3,34 (apd (5,1)u=1) The possible multiplicative orders in $Z_{1,3}$ are the divisors of $λ_1(15) = \text{Icm} [2,3), λ_2(5)] = \text{Icm}(2,4)=4$ namely 1, 2, 4 Order 0.7 = $Z^{1/2} = Z^{1/2} = Z^{1/2} = A^{1/2}$ order of 2 is 4														
	By selecting i=1,3 we get god(4,i)=1 => 2 ¹ 2 ³ or 2,8 having order 4 Order of 4: 4 ¹ = 4 ≠ 1, 4 ² = 1,														
	Order	of 4:	41=	4≠ 1, 4 ² =	-1,			=> orc	ler of 4 is	2					
				7≠1,7 ² =											
		ecting i	=1,3 we g	get gcd(4	,ı)=1			=> 7 ¹ 7 ¹	or 7 ,13	having o	order 4				
	é														
	Order			11≠ 1, 11 :14≠ 1, 1 4				⇒ ord ⇒ ord							
	Order Order	of 14:	141 =		4 ² = 1			⇒ ord	er of 14	s 2	10	11	12	13	14
	Order Order	_{of 14:} cle s	14' =	14≠ 1, 14	er = 1	non-u	units	⇒ ord in th	er of 14	s 2 Z15	10 n*10	11 n^11	12 n^12	13 n*13	14 n*14
E	Order Order	of 14: cle s	14 ¹ =	14≠ 1, 14 ture o	4 ^{2 = 1}	non-u	units	⇒ ord in th	er of 14 e ring 8	s 2 Z ₁₅ 9					
	Order Order Cy	of 14: cle s	141 =	14≠ 1, 14 ture o 3 n^3	4 ^{2 = 1}	5 n*5	units	ord in th 7 n^7	er of 14 i e ring 8 n ⁴ 8	s 2 Z_{15 9 n'9}	n^10	n^11	n^12	n^13	n ⁴¹⁴
	Order Order Cyo n 3	of 14: cle s	141 = struct 2 n^2 9	14≠ 1, 14 ture o 3 n^3 12	4 ^{2 = 1}	5 n ⁴⁵ 3	6 n ⁴⁶ 9	ord in th 7 n^7 12	er of 14 i e ring 8 n ⁴⁸ 6	s 2 Z 15 9 1 ⁴ 9 3	n*10 9	n^11 12	n^12 6	n*13 3	n*14 9
	Order Order Cyu n 3 5	of 14: cle s 1 n ⁴¹ 3 5	14 ¹ = struct n ² 9 10	14≠ 1, 14 ture c 3 n^3 12 5	4 ² = 1 of all 4 n ⁴ 6 10	5 n ⁴⁵ 3 5	6 n ⁴⁶ 9	ord in th 7 n^7 12 5	er of 14 i e ring 8 n ⁴ 8 6 10	s 2 Z ₁₅ 9 n ⁴⁹ 3 5	n*10 9 10	n ⁴ 11 12 5	n*12 6 10	n*13 3 5	n*14 9 10

2
2
22
2
2
•
-
2
_
2
2
_
2
2
2
8
2
2
5
5
2
2
2
-
2
3