Cryptology Design Fundamentals
Grundlagen des kryptographischen Systementwurfs
Module ID: ET-IDA-048
Tutorial-02-2

Supplementary-Experimental Analysis

Mathematical Background: Groups, Rings, Finite Fields (GF)
05.01.2015, v5

Prepared by: Tianqing Su
Prof. W. Adi

Tutorials extensions for lecture 3

Rings, Fields, Groups

Includes full analysis:
For $G F(41), Z_{56}, \mathrm{Z}_{2^{n}}(f o r n=5)$
And $\mathrm{Z}_{2^{n}+1}($ for $\mathrm{n}=5), \mathrm{Z}_{2^{n}-1}($ for $\mathrm{n}=4)$

Technical University of Braunschweig IDA: Institute of Computer and Network Engineering		Page: 2

Objectives of this extended analysis

Engineering is interested in the behaviour of this finite state machine:

What is the deterministic size n of this loop?
That is the period of the element a (element's order or period/sequence length)

Problem 1: Elements of $Z_{41}=\mathrm{GF}(41)$
Which additive orders are possible in GF(41)
How many invertible element under multiplication do exist in $\mathrm{GF}(41)$ (number of units in $\mathrm{GF}(41)$)?
Compute the number of elements from in $\mathrm{GF}(41)$
5. Compute the order of all elements in $\mathrm{GF}(41)$ using the primitive element 7

Solution 1:

Additive group $=(0,1,2, \ldots, 40)$
The smalest positive solution of the congruence $\mathrm{ax}=0(\bmod \mathrm{n})$ is called the additive order of a modulo n The possible additive orders in $\mathrm{GF}(41)$ are the divisors of order of the additive group, namely 1,41
The additive order of element b in $\mathrm{GF}(41)$:
for $b \neq 0 \Rightarrow$ order of b is 41
for $b=0 \Rightarrow$ order of b is 1
2. Number of inverible elements (units) is Euler function $\phi(41)=41-1=40$
3. The possible multipicative orders in $\mathrm{GF}(41)$ are the divisors of $\phi(41)=40=2.2 .2 .5$, namely $1,2,4,5,8,10,20,40$

Number of elements with order 1 is $\phi(1)=1$
Uumber of elements with order 2 is $\phi(2)=(2-1)=1$
Number of elements with order 4 is $\phi(4)=4(1-1 / 2)=2$
Number of elements with order 5 is $\phi(5)=(5-1)=4$
Number of elements with order 8 is $\phi(8)=\phi(8)=\phi\left(2^{3}\right)=8(1-1 / 2)=4$
Number of elements with order 10 is $\phi(10)=\phi(2 \times 5)=(2-1)(5-1)=4$
Number of elements with order 20 is $\phi(20)=\phi(2 \times 2 \times 5)=20(1-1 / 1)(1-1$
Number of elements with order 40 is $\phi(40)=\phi(2 \times 2 \times 2 \times 5)=40(1-1 / 2)(1-1 / 5)=16$


```
Solution 1
5. Order of 7 : \(7^{1}=7 \neq 1,7^{2}=8 \neq 1,7^{4}=8^{2}=23 \neq 1,7^{5}=7 \times(23)=38 \neq 1,7^{8}=23^{2}=37,7^{10}=38^{2}=9 \neq 1,7^{20}=9^{2}=4\)
If the order of \(\Rightarrow\) order of 7 is 40,7 is a primitive element, which can generate the whole group.
If the order of \(\alpha\) is \(k\) then \(\operatorname{Ord}\left(\alpha^{i}\right)=k / \operatorname{gcd}(i, k)\).
By selecting \(i=40\) we get \(\operatorname{gcd}(40, \mathrm{i})=40\). Ord \(\left(7^{\mathrm{i}}\right)=40 / \operatorname{gcd}(\mathrm{i}, 40)=40 / 40=1\)
\(\Rightarrow 7^{40}\) or 1 are 1 element having order 1
\(B y\) selecting \(i=20\) we get \(\operatorname{gcc}(40, i)=20\). Ord \(\left(7^{\circ}\right)=40 / \operatorname{gcd}(i, 40)=40 / 20=2\)
\(\Rightarrow 7^{20}\) or 40 are 1 element having order 2
By selecting \(i=10,30\) we get \(\operatorname{gcd}(40, i)=10 .\). Ord \((7 \mathrm{~T})=40 / \mathrm{gcd}(\mathrm{i}, 40)=40110=4\)
\(\Rightarrow 7^{10}, 7^{30}\) or 9,32 are 2 elements having order 4
\(\Rightarrow 7,1=1,32\) are 2 emens having order
```



```
By selecting \(i=5,15,25,35\) we get gcd \((40, \mathrm{i})=5\). . Ord \(\left(7^{\prime}\right)=40 / \operatorname{gcd}(\mathrm{i}, 40)=4\)
\(\Rightarrow 7^{5}, 7{ }^{71}, 77^{25}, 735\) or \(38,14,3,27\) are 4 elements having order 8
```



```
, 1,70 or \(23,31,4,25\) are 4 elements having order 10
By selecting i=2, 6, 14, 18, 22, 26,34, 38 we get \(\operatorname{gcd}(40, \mathrm{i})=2\). Ord \(\left(77^{1}\right)=40 / \mathrm{gcd}(i, 40)=40 / 2=20\) By selecting \(i=1,3,7,9,11,13,17,19,21,23,27,29,31,33,37,39 \quad\) are 8 elements having order 20
we get \(\operatorname{gcc}(40,1)=1\).. Ord \((\tau)=40 / \mathrm{gcc}(1,40)=4011=40\)
\(\Rightarrow 7^{1}, 7^{3}, 7^{7}, 7^{9}, 7^{11}, 7^{13}, 7^{17}, 7^{19}, 7^{21}, 7^{23}, 7^{27}, 7^{29}, 77^{31}, 7^{33}, 7^{37}, 7^{39}\) or
\(7,15,17,13,22,12,30,35,34,26,24,28,19,29,11,6\) are 16
\(7,15,17,13,22,12,30,35,34,26,24,28,19,29,11,6\) are 16 elements having order 40
```


Multiplicative orders of all exponents of the primitive element $a=7$ in the ring \mathbf{Z}_{56}


```
Problem 2: Elements of the ring Z Z 
. How many invertible element under multiplication do exist in }\mp@subsup{Z}{56}{}\mathrm{ (number of units in }\mp@subsup{Z}{56}{}\mathrm{ )
Which multiplicative orders are possible in Z}\mp@subsup{Z}{5}{*
3. Compute the order of the elements of Z Z56
Compute the order of many non-unit elements
Solution 2:
```



```
    O.
    Order of: 5: 5}=5\not=1,\quad\mp@subsup{5}{}{2}=25\not=1,\mp@subsup{5}{}{3}=13\not=1, =>> order of 3 is 6
    ll
    Order of 11: 11 =11 =1, 112 =9* 1, 11 = 9x11=43*1
```



```
    OO
    \)
    O
    Order of 25: 25'=25*1, 25'=9\not=1,25
    Order of 27: 27 =27 =1, 27 }
    Order of 29: 29'=29\not=1,22'=1,}\quad=>\quad=>\mathrm{ order of 27 is 2
    Order of 31: 31'=31\not=1, 31'2=9\not=1,3\mp@subsup{1}{}{3}=9\times31=55=1\quad }\quad\mathrm{ => order of 29 is 2
TTecnical Unverstyy ofrraunschwelg
```



```
age: 7
(50)=\phi(2\times7)=56(1-1/2)(1-17)=24
    # 跡er of 13 is 2
    OOrder of 29:291=29*1, 292=1
Solution 2:

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Multiplicative orders of all units in the ring \(\mathbf{Z}_{56}\)} \\
\hline n & \(\mathrm{n}^{\wedge 1}\) & \(\mathrm{n}^{\wedge} 2\) & \(\mathrm{n}^{\wedge} 3\) & \(\mathrm{n}^{\wedge} 6\) & \(\operatorname{Ord}(\mathrm{n})\) \\
\hline 1 & 1 & & & & 1 \\
\hline 3 & 3 & 9 & 27 & 1 & 6 \\
\hline 5 & 5 & 25 & 13 & 1 & 6 \\
\hline 9 & 9 & 25 & 1 & & 3 \\
\hline 11 & 11 & 9 & 43 & 1 & 6 \\
\hline 13 & 13 & , & & & 2 \\
\hline 15 & 15 & 1 & & & 2 \\
\hline 17 & 17 & 9 & 41 & 1 & 6 \\
\hline 19 & 19 & 25 & 27 & 1 & 6 \\
\hline 23 & 23 & 25 & 15 & 1 & 6 \\
\hline 25 & 25 & 9 & 1 & & 3 \\
\hline 27 & 27 & 1 & & & 2 \\
\hline 29 & 29 & & & & 2 \\
\hline 31 & 31 & 9 & 55 & 1 & 6 \\
\hline 33 & 33 & 25 & 41 & 1 & 6 \\
\hline 37 & 37 & 25 & 29 & 1 & 6 \\
\hline 39 & 39 & 9 & 15 & 1 & 6 \\
\hline 41 & 41 & 1 & & & 2 \\
\hline 43 & 43 & , & & & 2 \\
\hline 45 & 45 & 9 & 13 & 1 & 6 \\
\hline 47 & 47 & 25 & 55 & 1 & 6 \\
\hline 51 & 51 & 25 & 43 & 1 & 6 \\
\hline 53 & 53 & 9 & 29 & 1 & 6 \\
\hline 55 & 55 & 1 & & & 2 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Technical University of Braunschweig \\

\end{tabular}} & \[
2 m
\] & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{24}{|c|}{Cycle structure of all non-units in the ring \(\mathbf{Z}_{56}\)} \\
\hline & 1 & & & & & & & & & & & 12 & \({ }^{13}\) & \({ }^{14}\) & & & & & 51 & 52 & 53 & & \\
\hline & \({ }^{\text {m }}\) 1 \({ }^{1}\) & \({ }^{\text {ma }}\) & & & & & & & \({ }^{\text {n }}\) g \({ }^{\text {an }}\) & & \({ }_{32}\) & \({ }^{\text {man } 12 n}\) & \(2{ }^{1} \times 13\) & \({ }^{3 m_{1} 14}\) & \(\mathrm{m}^{\text {¹ }} 15-47\) & & \({ }^{8}\) & \({ }^{\text {ma }}\) 50n & ¢ \({ }^{2} 51 \mathrm{n}\) n & \({ }^{\wedge}{ }^{\text {a } 2}\) & \({ }^{1 \times 53}\) & & \\
\hline & 4 & \({ }^{16}\) & 8 & 32 & & 8 & 32 & \({ }^{16}\) & \({ }^{8}\) & \({ }^{32}\) & & & & & crybestrusture & 8 & 32 & \({ }_{16}\) & 8 & 32 & 16 & & \\
\hline & \({ }^{6}\) & \({ }^{36}\) & \({ }^{48}\) & & & \({ }^{8}\) & \({ }^{8}\) & \({ }^{8}\) & & & & & & & cypestrsctue & 8 & 48 & 8 & \({ }^{48}\) & \({ }^{8}\) & \({ }^{18}\) & & \\
\hline & 7 & 49 & 7 & 49 & & 49 & & & & & & & & & cyetestrestre & 49 & 7 & 49 & 7 & 49 & & & \\
\hline & \({ }^{8}\) & 8 & \({ }^{8}\) & & & & & & & & & & & & cyple structue & 8 & \({ }^{8}\) & \({ }^{8}\) & \({ }_{8}^{8}\) & \({ }^{8}\) & 8 & & \\
\hline & 10 & \({ }^{4}\) & \({ }^{48}\) & 32 & & & & & & \({ }^{32}\) & 40 & 8 & \({ }^{24}\) & \({ }^{16}\) & cypes smextue & 8 & \({ }^{24}\) & \({ }^{16}\) & \({ }^{48}\) & 32 & 40 & & \\
\hline & \({ }_{14}^{12}\) & 32 & \({ }^{48}\) & \({ }^{16}\) & & 8 & \({ }^{40}\) & 32 & 48 & \({ }^{16}\) & \({ }^{24}\) & 8 & 40 & 32 & Cyple strectue & \({ }^{8}\) & \({ }^{0}\) & \({ }_{32}\) & \({ }^{48}\) & \({ }^{16}\) & \({ }^{24}\) & & \\
\hline & & & 8 & & & 8 & & & & & & & & & cyele struxue & \(\stackrel{\square}{8}\) & \({ }_{16}\) & 32 & 8 & 15 & 32 & & \\
\hline & & 4 & 8 & & & & & 16 & 8 & \({ }^{32}\) & \({ }^{16}\) & & & & cycestaxtue & 8 & 32 & & & & 16 & & \\
\hline & 20 & 8 & \({ }^{48}\) & 8 & 48 & 8 & 48 & & & & & & & & cypestaxture & 8 & 48 & \% & 48 & 8 & \({ }^{48}\) & & \\
\hline & \({ }^{21}\) & 4 & & 49 & & 49 & & & & & & & & & cyces strutue & 49 & \({ }^{21}\) & 49 & \({ }^{21}\) & 49 & 21 & & \\
\hline & \({ }^{22}\) & & & & 8 & & & & & & & & & & cyplestruxtue & 8 & \({ }^{\text {c }}\) & , & 8 & 8 & 8 & & \\
\hline & \({ }^{24}\) & 18 & \({ }^{48}\) & 32 & \({ }^{40}\) & \({ }^{8}\) & \({ }^{24}\) & \({ }^{16}\) & 48 & \({ }^{32}\) & \({ }^{40}\) & , & \({ }^{24}\) & & cyple stratue & 8 & 24 & 16 & \({ }^{48}\) & 32 & \({ }^{40}\) & & \\
\hline & 28 & \({ }_{0}\) & \({ }^{48}\) & \({ }^{16}\) & \({ }^{24}\) & 8 & 40 & 32 & 48 & \({ }^{16}\) & \({ }^{24}\) & 8 & 40 & 32 & cypesterstue & 8 & 40 & \({ }^{32}\) & \({ }^{48}\) & 16 & \({ }^{24}\) & & \\
\hline & \({ }^{28}\) & \(\bigcirc\) & & & 3 & 8 & 16 & 32 & \({ }^{-}\) & \({ }^{\circ} \mathrm{O}\) & \({ }^{32}\) & & & & cypestruxue & 8 & \({ }_{18}\) & \({ }^{32}\) & \(\square^{\circ}\) & \({ }_{16}\) & 32 & & \\
\hline & 32 & & \({ }^{8}\) & 32 & & & 32 & & - & & & & & & cypes structue & - & 32 & 16 & 8 & 32 & 2 & & \\
\hline & \({ }_{34}\) & & \({ }^{48}\) & 8 & & & \({ }^{48}\) & \({ }^{8}\) & & & & & & & cypestancture & 8 & \({ }^{48}\) & 8 & \({ }^{48}\) & 8 & \({ }^{48}\) & & \\
\hline & \({ }^{35}\) & & & 49 & & 49 & & & & & & & & & cypestinctue & 49 & 35 & 49 & \({ }^{35}\) & 49 & \({ }^{35}\) & & \\
\hline & \({ }^{36}\) & \({ }^{\circ}\) & \({ }^{8}\) & \({ }^{8}\) & & & & & & & & & & & cypestrselue & 8 & 2 & \({ }^{8}\) & \({ }^{\circ}\) & \({ }^{8}\) & 8 & \({ }^{8}\) & \\
\hline & & \({ }_{32}\) & & & & & & & \({ }_{48}^{48}\) & \({ }_{16}^{32}\) & \({ }_{20}^{40}\) & \({ }_{8}^{8}\) & \({ }_{40}^{24}\) & \({ }_{18}^{16}\) & cypestaxtue & \({ }_{8}^{8}\) & 24 & \({ }^{16}\) & \({ }^{48}\) & \({ }^{32}\) & \({ }_{20}^{40}\) & 8 & \\
\hline & \({ }^{42}\) & 28 & & & & & & & & & & & & & Cyplestanctue & 。 & - & 2 & - & . & \({ }^{\circ}\) & & \\
\hline & \({ }^{44}\) & & 8 & & & 8 & & \({ }^{32}\) & \({ }^{8}\) & \({ }^{16}\) & & & & & cyele sinctue & 8 & 16 & 32 & 8 & 16 & 32 & & \\
\hline & \({ }^{46}\) & 4 & \({ }^{8}\) & \({ }^{32}\) & \({ }^{16}\) & 8 & 32 & 16 & \({ }^{8}\) & 32 & 16 & & & & cyple strestue & \({ }^{8}\) & \({ }_{32}^{32}\) & \({ }^{16}\) & \({ }^{8}\) & \({ }^{32}\) & \({ }^{18}\) & \({ }_{8}^{8}\) & \\
\hline & & & & & & & & & & & & & & &  & \({ }_{4}^{8}\) & \({ }_{49}^{48}\) & \({ }_{4}{ }^{8}\) & & \({ }^{8} 8\) & \({ }_{4}^{48}\) & & \\
\hline & 50 & 36 & 8 & \({ }^{8}\) & \({ }^{8}\) & & & & & & & & & & Cryces structur & 1 & 8 & \({ }^{-1}\) & 8 & 8 & 8 & & \\
\hline \multicolumn{22}{|c|}{Technical University of Braunschweig} & & Page: 11 \\
\hline
\end{tabular}

```

Solution 3:

```

```

 ll
 alternativ:
Order of 3: }\quad\mp@subsup{3}{}{3}=3\not=1,\mp@subsup{3}{}{2}=9\not=1,\mp@subsup{3}{}{4}=\mp@subsup{9}{}{2}=17\not=1\quad=>\mathrm{ order of }3\mathrm{ is }
If order }\alpha=k,\mathrm{ then ord ((ai) =k iff gcd(k,i)=1
By selectingi=1,,,5,7 we get gcd(8,i)=1, Ord (3i)=8/gcd (i,8)=8
Order of 5: }\mp@subsup{5}{}{1}=5\not=1,\mp@subsup{5}{}{2}=25\not=1,\mp@subsup{5}{}{4}=2\mp@subsup{5}{}{2}=17\not=1\quad=>\mathrm{ order of 5 is
By selecting i=1,3,5,7 we get gcc(8,i)=1.
= 5' 5}\mp@subsup{5}{}{3}\mp@subsup{5}{}{5}\mp@subsup{5}{}{5}\mathrm{ or 5, 29, 21, 13 having order 8
Order of 7: }\mp@subsup{7}{}{1}=7\not=1,\mp@subsup{7}{}{2}=17\not=1,\mp@subsup{7}{}{4}=1\mp@subsup{7}{}{2}=1\quad=>\mathrm{ order of }7\mathrm{ is }
BByselecting i=1,3 we get gcc(4,i)=
Order of 15: (15' = 15 =1, 15' =1 => order of 15 is 2


```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Multiplicative orders of all units in the ring \(\mathrm{Z}_{32}\)} \\
\hline n & n^1 & \(\mathrm{n}^{\wedge} 2\) & \(\mathrm{n}^{\wedge} 4\) & \(\mathrm{n}^{\wedge} 8\) & \(\operatorname{Ord}(\mathrm{n})\) \\
\hline 1 & 1 & & & & 1 \\
\hline 3 & 3 & 9 & 17 & 1 & 8 \\
\hline 5 & 5 & 25 & 17 & 1 & 8 \\
\hline 7 & 7 & 17 & 1 & & 4 \\
\hline 9 & 9 & 17 & 1 & & 4 \\
\hline 11 & 11 & 25 & 17 & 1 & 8 \\
\hline 13 & 13 & 9 & 17 & 1 & 8 \\
\hline 15 & 15 & 1 & & & 2 \\
\hline 17 & 17 & 1 & & & 2 \\
\hline 19 & 19 & 9 & 17 & 1 & 8 \\
\hline 21 & 21 & 25 & 17 & 1 & 8 \\
\hline 23 & 23 & 17 & 1 & & 4 \\
\hline 25 & 25 & 17 & 1 & & 4 \\
\hline 27 & 27 & 25 & 17 & 1 & 8 \\
\hline 29 & 29 & 9 & 17 & 1 & 8 \\
\hline 31 & 31 & 1 & & & 2 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Technical University of Braunschweig \\
IDA: Institute of Computer and Network Engineering
\end{tabular}} & & & Page: 14 \\
\hline
\end{tabular}

\section*{Solution 3:}

\(2^{20}=0,2^{31}=0\)
```

Notice: order 2as a non unitis by definition =

```

Element 4 is not invertible. Exponents of 4 : \(4^{1}=4,4^{2}=16,4^{3}=0,4^{6}=0,4^{5}=0,4^{6}=0,4^{7}=0,4^{8}=0\),
\(4^{30}=0,4^{31}=0\)
Notice: order 4 as a non unit is by definition \(=\infty\)

Element 30 is not invertible. Exponents of 30 : \(30^{\prime}=30,30^{2}=4,30^{3}=24,30^{4}=16,30^{5}=0,30^{6}=0,30^{7}=0\)

Notice: order 30 as a non unit is by definition \(=\infty\)

Technical University of Braunschweig
(h) mintin

Page: 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{Cycle structure of all non-units in the ring \(\mathbf{Z}_{32}\)} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 15 & 16-31 \\
\hline n & n^1 & \(\mathrm{n}^{\wedge} 2\) & \(\mathrm{n}^{\wedge} 3\) & \(\mathrm{n}^{\wedge} 4\) & \(\mathrm{n}^{\wedge} 5\) & \(\mathrm{n}^{\wedge} 6\) & \(\mathrm{n}^{\wedge} 7\) & \(\mathrm{n}^{\wedge} 8\) & \(\mathrm{n}^{\wedge} 9\) & \(\mathrm{n}^{\wedge} 10\) & \(\mathrm{n}^{\wedge 11}\) & \(1 \mathrm{n}^{\wedge} 12\) & \(\mathrm{n}^{\wedge} 13\) & n^15 & \(\mathrm{n}^{\wedge} 16-\mathrm{n}^{\wedge} 31\) \\
\hline 2 & 2 & 4 & 8 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 4 & 4 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 6 & 6 & 4 & 24 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 8 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 10 & 10 & 4 & 8 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 12 & 12 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 14 & 14 & 4 & 24 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 16 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 18 & 18 & 4 & 8 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 20 & 20 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 22 & 22 & 4 & 24 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 24 & 24 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 26 & 26 & 4 & 8 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 28 & 28 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 30 & 30 & 4 & 24 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
Technical University of Braunschweig \\
IDA: Institute of Computer and Network Engineering
\end{tabular}} & & &  & & & & & & \\
\hline
\end{tabular}

\section*{Problem 4: Elements of \(\mathrm{Z}_{\mathrm{n}}\) Where n is not a prime and \(\mathrm{n}=2^{\mathrm{t}}+1\) or \(\mathrm{n}=2^{\mathrm{t}}-1\) for several values of \(t\).}

How many invertible element under multiplication do exist in \(Z_{n}\) (number of units in \(Z_{n}\) )?
Which multiplicative orders are possible in \(Z_{n}\)
ents of \(Z_{n}^{\prime}\)
4. Compute the order of many non-unit elements

Solution 4:
For \(\mathrm{t}=5, \mathrm{n}=2^{\mathrm{t}}+1=33\)
Number of invertible elements (units) is Euler function \(\phi(33)=\phi(3 \times 11)=2 \times 10=20\)
The 20 units in \(Z_{33}\) are: \(u=1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32(\operatorname{gcd}(33, u)=1)\)
The 20 units in \(Z_{33}\) are: \(u=1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32(g \operatorname{gcc}(33, u)=1)\)
The possible multipicicative orders in \(Z_{33}\) are the divisors of \(\lambda(3)=\operatorname{cm}[\lambda(3), \lambda(11)]=\operatorname{lm}(2,10)=10\)
Order of 2: \(\quad 2^{1}=2 \neq 1,2^{2}=4 \neq 1,2^{5}=32 \neq 1 \quad \Rightarrow\) order of 2 is 10
Order of 4 : \(\quad 4^{1}=4 \neq 1,4^{2}=16 \neq 1,4^{5}=1\)
\begin{tabular}{lll} 
Order of \(5:\) & \(5^{1}=5 \neq 1,5^{2}=25 \neq 1,5^{5}=23 \neq 1 \quad \Rightarrow\) & \(\Rightarrow\) order of 4 is 5 \\
\hline
\end{tabular}
Order of 7 : \(7^{1}=7 \neq 1,7^{2}=16 \neq 1,7^{5}=10 \neq 1\)
Order of \(8: \quad 8=8 \neq 1,8^{2}=31 \neq 1,8^{5}=32 \neq 1\)
\begin{tabular}{ll} 
Order of \(10:\) & 10 \\
\hline 10 & \(=10 \neq 1,10^{2}=1\),
\end{tabular}\(\quad \Rightarrow\) order of 8 is 10
Order of 13: \(\quad 13^{1}=13 \neq 1,13^{2}=4 \neq 1,13^{5}=10 \neq 1 \quad \Rightarrow\) order of 13 is 10
Aredor 14: \(\quad \begin{array}{ll}14^{1}=14 \neq 1,14^{2}=31 \neq 1,14^{5}=23 \neq 1 \quad \Rightarrow \text { order of } 14 \text { is } 10\end{array}\)


Page: 17
```

Solution 4:

Order of 17:	$17^{1}=17 \neq 1,17^{2}=25 \neq 1,17^{5}=32 \neq 1$	0
Order of 19:	$19^{1}=19 \neq 1,19^{2}=31 \neq 1,19^{5}=10 \neq 1$	\Rightarrow order of 19 is 10
Order of 20:	$20^{1}=20 \neq 1,20^{2}=4 \neq 1,20^{5}=23 \neq 1$,	\Rightarrow order of 20 is 10
Order of 23:	$23^{\prime}=23 \pm 1,23^{2}=1$	order of 23 is
Order of 25:	$25^{1}=25 \pm 1,25^{2}=31 \neq 1,25^{5}=1$	order of 25 is 5
Order of 26:	$26^{1}=26=1,26^{2}=16 \neq 1,26^{5}=23 \neq 1$	\Rightarrow order of 26 is 10
Order of 28:	$28^{1}=28 \pm 1,28^{2}=25 \pm 1,28^{5}=10 \neq 1$	order of 28 is 10
Order of 29:	$29^{1}=29 \pm 1,29^{2}=16 \neq 1,29^{5}=32 \neq 1$	order of 29 is 10
Order of 31:	$31^{1}=311=1,31^{2}=4 \neq 1,31^{5}=1$	\Rightarrow order
Order of 32:	$32^{1}=32 \neq 1,32^{2}=1$	\Rightarrow order

4. Cycle structure of all non-units in the ring \mathbf{Z}_{33}
```


Technical University of Braunschwielg
需
Page:

\section*{Solution 4:}

\section*{For \(\mathrm{t}=4, \mathrm{n}=\mathrm{n}=2^{\mathrm{t}}-1=15\)}

The 8 units in in
The possible multipicicative orders in in \(Z_{15}\),
3. namely 1,2,


\(\begin{array}{ll}\text { Order of 11: } & \begin{array}{l}11=11=1,112=1 \\ \text { Order of 14: } \\ 14=14 * 1,14^{2}=1\end{array}\end{array} \quad \Rightarrow\) order of 11 is 2
4. Cycle structure of all non-units in the ring \(Z_{15}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 1 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline n & \(\mathrm{n}^{\wedge 1}\) & \(\mathrm{n}^{\wedge 2}\) & \(\mathrm{n}^{\wedge 3}\) & \(\mathrm{n}^{4} 4\) & \(\mathrm{n}^{\wedge 5}\) & \(\mathrm{n}^{\wedge 8}\) & \(\mathrm{n}^{\wedge 7}\) & \(\mathrm{n}^{\wedge 8}\) & \(\mathrm{n}^{\wedge 9}\) & \(\mathrm{n}^{\wedge 10}\) & \(\mathrm{n}^{\wedge 11}\) & \(\mathrm{n}^{\wedge 12}\) & \(\mathrm{n}^{\wedge 13}\) & \(\mathrm{n}^{\wedge 44}\) \\
\hline 3 & 3 & 9 & 12 & 6 & 3 & 9 & 12 & 6 & 3 & 9 & 12 & 6 & 3 & 9 \\
\hline 5 & 5 & 10 & 5 & 10 & 5 & 10 & 5 & 10 & 5 & 10 & 5 & 10 & 5 & 10 \\
\hline 9 & 9 & 6 & 9 & 6 & 9 & 6 & 9 & 6 & 9 & 6 & 9 & 6 & 9 & 6 \\
\hline 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
\hline 12 & 12 & 9 & 3 & 6 & 12 & 9 & 3 & 6 & 12 & 9 & 3 & 6 & 12 & 9 \\
\hline
\end{tabular}

Problem 5: Elements of the ring \(\mathbf{Z}_{11}\)
1. How many invertible element under multiplication do exist in \(Z_{113}\) (number of units in \(Z_{113}\) )
2. Which multiplicative orders are possible in \(Z_{113}\)
4. Compute thimitive elements under multiplication do exist in \(Z_{113}\)

Solution 2:
Number of invertible elements (units) is Euler function \(\phi(113)=(113-1)=112\)
The 112 units in \(Z_{113}\) are: \(u=1,2,3,4,5,5,6,7,8,9,10,11,12,13,14,15,16,17, \ldots . . .112\) (gcd (113,u) \(\left.=1\right)\)
2. The possible multipicicative orders in \(G F(113)\) are the divisors of \(\phi(113)=112=2.2 .2 .2 .7\), namely \(1,2,4,7,8,14\) 16,28,56,112
3. The number of primitive elements in a finite field \(G F(n)\) is \(\phi(n-1)=\phi(112)=\phi\left(2^{4} \times 7\right)=112(1-1 / 2)(1-1 / 7)=48\)

Order of \(22^{1}=2 \neq 1,2^{2}=4 \neq 1,2^{4}=16 \neq 1,2^{7}=15 \neq 1,2^{8}=30 \neq 1,2^{14}=112 \neq 12^{16}=109 \neq 1,2^{28}=\)
Order of 3 : \(3^{1}=3 \neq 1,3\)
order of 3 is \(112=9 \neq 1,3^{4}=81 \neq 1,3^{7}=40 \neq 1,3^{8}=7 \neq 1,3^{14}=18 \neq 1,3^{16}=49 \neq 1,3^{28}=98 \neq 1,3^{56}=112 \neq 1\)
Order of 4 : \(4^{1}=4 \neq 1,4^{2}=16 \neq 1,4^{4}=30 \neq 1,4^{7}=112 \neq 1,4^{8}=109 \neq 1,4^{14}=1 \neq 1\)
\(\Rightarrow\) order of 4 is 14
Order of \(55^{1}=5 \neq 1,5^{2}=25 \neq 1,5^{4}=60 \neq 1,5^{7}=42 \neq 1,5^{8}=97 \neq 1,5^{14}=69 \neq 1,5^{16}=30 \neq 1,5^{28}=15 \neq 1,5^{56}=112 \neq 1\)
\(\Rightarrow\) order of 5 is 112 Etc....

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{Multiplicative orders of all units in the ring \(\mathbf{Z}_{113}\)} \\
\hline \begin{tabular}{|l|}
\hline\(n\) \\
\hline 1 \\
\hline
\end{tabular} & n \({ }^{1} 1\) & n~2 & \({ }^{\text {n }} 14\) & n^7 & \(\mathrm{n}^{\wedge} \mathrm{B}\) & n^14 & \({ }^{\wedge} 16\) & \({ }^{\text {n } 28}\) & n^5 & |n^112 & \(\operatorname{Ord}(\mathrm{n})\) \\
\hline \(\frac{1}{3}\) & \(\stackrel{2}{3}\) & \begin{tabular}{l}
1 \\
\hline \\
\hline
\end{tabular} & \({ }_{18}^{16}\) & \({ }_{1}^{15}\) & \({ }^{3} 1\) & \({ }_{1}^{112}\) & - 109 & \(\stackrel{1}{98}\) & 112 & 1 & \(\frac{28}{112}\) \\
\hline \begin{tabular}{|r|r|}
\hline 1 \\
\hline \\
\hline
\end{tabular} & \({ }^{3}\) & \({ }^{9}\) & \({ }^{\text {81 }} 3\) & \(\frac{40}{112}\) & \(\stackrel{7}{109}\) & \({ }^{18}\) & & \({ }^{98}\) & 112 & 1 & 112 \\
\hline \(\stackrel{5}{6}\) & \(\stackrel{5}{6}\) & \({ }^{\frac{25}{36}}\) & \({ }_{5}^{\text {co }}\) & 42
35 & \({ }_{9}^{97}\) & \({ }_{96}{ }^{69}\) & \({ }_{30}^{30}\) & \({ }^{15}\) & \(\frac{112}{112}\) & \(\stackrel{1}{1}\) & 112 \\
\hline \({ }_{8}\) & \({ }_{8}\) & \({ }_{64}^{49}\) & \({ }^{\frac{28}{28}}\) & \({ }^{112}\) & 106 & \(\frac{11}{112}\) & 49 & 1 & & & \({ }^{14}\) \\
\hline \(\stackrel{9}{10}\) & \(\stackrel{9}{10}\) & \(\frac{81}{100}\) & \({ }_{5}^{7}\) & \({ }^{18}\) & \({ }_{88}^{49}\) & \({ }_{4}^{98}\) & 28
106
106 & \(\frac{112}{15}\) & \(\frac{1}{112}\) & 1 & ¢ \({ }^{56}\) \\
\hline 11 & 11 & \({ }^{\text {8 }}\) & \({ }_{5}^{64}\) & \({ }^{95}\) & \({ }^{28}\) & \({ }^{98}\) & \({ }_{1}^{106}\) & \({ }^{112}\) & & 1 & \({ }^{56}\) \\
\hline 12 & \begin{tabular}{|l}
12 \\
13
\end{tabular} & \({ }^{31}\) & \({ }^{57}\) & \({ }^{73}\) & \({ }_{1}^{85}\) & \({ }_{1}^{18}\) & 106 & \(\frac{98}{112}\) & \({ }_{1}^{12}\) & 1 & \({ }_{58}^{112}\) \\
\hline 14 & 14 & \({ }^{83}\) & \(\stackrel{109}{1}\) & \({ }^{98}\) & 16 & 112 & 30 & & & & \({ }^{28}\) \\
\hline \(\stackrel{16}{17}\) & \(\stackrel{16}{17}\) & \({ }^{30}\) & \(\stackrel{109}{14}\) & \({ }^{78}\) & \({ }^{83}\) & 95 & 109 & \({ }^{98}\) & 112 & 1 & \(\xrightarrow{712}\) \\
\hline \({ }_{18}^{18}\) & \({ }_{18}^{18}\) & \({ }_{98}^{98}\) & \({ }^{112}\) & \({ }_{42}^{44}\) & 1 & 0 & 49 & 15 & 112 & & \\
\hline 20 & - &  & \(\stackrel{\text { ces }}{\substack{32 \\ 105}}\) & \begin{tabular}{l} 
42 \\
\hline 73 \\
\hline 1
\end{tabular} & \({ }^{64}\) & \begin{tabular}{l} 
63 \\
\hline 18 \\
\hline 18
\end{tabular} & \({ }^{\frac{49}{28}}\) & 15 & \(\frac{112}{112}\) & \(\stackrel{1}{1}\) & \(\frac{112}{112}\) \\
\hline \(\frac{21}{22}\) & \({ }^{21}\) & \({ }^{102}\) & \(\frac{8}{7}\) & \(\begin{array}{r}73 \\ \hline 69 \\ \hline\end{array}\) & \({ }^{64}\) & \({ }^{18}\) & \({ }^{28}\) & \(\stackrel{98}{112}\) & \({ }_{112}^{112}\) & 1 & \({ }_{512}\) \\
\hline \(\stackrel{23}{24}\) & \({ }^{23}\) & \({ }^{77}\) & \({ }^{\frac{53}{8}}\) & \begin{tabular}{|c}
73 \\
78 \\
\hline
\end{tabular} & \({ }^{97}\) & \({ }^{18}\) & \({ }^{\frac{30}{28}}\) & \({ }^{98}\) & \(\frac{112}{112}\) & \(\frac{1}{1}\) & \(\frac{112}{112}\) \\
\hline 25 & \({ }^{25}\) & \({ }^{\text {co }}\) & 97 & 69 & & & 109 & \({ }^{112}\) & 1 & & \\
\hline  & \({ }^{26}\) & \begin{tabular}{l}
111 \\
\hline 10 \\
10
\end{tabular} & \(\stackrel{4}{2}\) & \(\frac{18}{42}\) & \({ }^{16}\) & \({ }^{98}\) & \(\stackrel{30}{16}\) & \({ }^{112} 15\) & \(\frac{1}{112}\) & 1 & - 112 \\
\hline - & - & \begin{tabular}{l}
106 \\
\hline 100 \\
10
\end{tabular} & \begin{tabular}{|c}
49 \\
\hline 14 \\
\hline 18
\end{tabular} & \({ }_{7}{ }^{1}\) & \({ }^{33}\) & 18 & 109 & \({ }^{98}\) & 112 & 1 & 112 \\
\hline & 30 & 109 & 16 & & & & & & & & \\
\hline \begin{tabular}{|l|l|}
\hline 108 \\
\hline 109 \\
\hline 108 \\
\hline
\end{tabular} & 108
109 & \({ }^{25}\) & \begin{tabular}{|c}
60 \\
30 \\
30
\end{tabular} & \begin{tabular}{|c}
71 \\
1 \\
1
\end{tabular} & 97 & 69 & 30 & 15 & 112 & 1 & 112 \\
\hline \begin{tabular}{|l|}
110 \\
\hline 111 \\
\hline 112 \\
\hline
\end{tabular} & \(\frac{110}{111}\) & \(\stackrel{9}{4}\) & \(\stackrel{81}{16}\) & \({ }_{9}^{73}\) & \(\frac{7}{30}\) & \(\frac{18}{112}\) & \(\stackrel{49}{109}\) & 98 & 96 & 1 & \({ }_{212}^{12}\) \\
\hline 112 & 112 & 1 & . & & & & & & & & 2 \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
Technical University of Braunschweig \\
IDA: Instutue of Computer and Nemomere Engneering
\end{tabular}} & & 花摭 & & & & & \\
\hline
\end{tabular}```

