Summary: Ring of Integers modulo $\mathrm{m} \mathbf{Z}_{\mathrm{m}}$

Introduction to Cryptology

Tutorial-02-1
Mathematical Background: Groups, Rings, Finite Fields (GF)

15.03.2023, v47

Euler Function $\phi(m)$ gives the number of invertible elements in Z_{m}
For $\mathrm{m}=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \ldots p_{t}^{e_{t}} \quad \rightarrow \quad \phi(\mathrm{~m})=m\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots \ldots$.
For $m=p_{1} p_{2} p_{3} \ldots p_{t} \rightarrow \phi(m)=\left(p_{1}-1\right)\left(p_{2}-1\right)\left(p_{3}-1\right) \ldots .$.
Order of elements in the Ring of Integers modulo m: Z_{m}
The invertible elements in $Z_{\underline{m}}$ build a multiplicative group called $Z_{\underline{m}}^{m}$ with the following properties

- The number of elements in Z_{m} is $\phi(m)$
$\cdot Z_{m}$ is a cyclic group ifit contains an element with the order $\phi(m)$
- The order of any element in Z_{m}^{\prime} divides $\phi(m)$
- If the order of α is k then $\operatorname{Ord}\left(\alpha^{\prime}\right)=k / \operatorname{gcd}(i, k)$
special case: If the order of α is k then the other elements with
order k are (α^{\prime}) where $\operatorname{gcd}(\mathrm{i}, \mathrm{k})=1$
- Number of elements with order k is $=\phi(k)$ if Z_{m}^{\prime} is a cyclic group

Summary: Euler and Carmichael Theorems

Problem 2-1: Elements of Z_{33}

1. How many invertible element under multiplication do exist in Z_{33} (number of units in Z_{33})?

Euler's Theorem

For any unit \mathbf{u} in \mathbf{Z}_{m} where $\mathbf{g c d}(\mathrm{m}, \mathrm{u})=\mathbf{1}$ (or for any element in Z_{m}^{\prime}), the following holds:
Compute of the 25 ad 7 in
Compute 3 other elements having the same order as 2,5 , and 7 .
Compute the order of the elements $10,32,23$
Compute the order of elements 4 and other elements having the same order
Fermat 's Theorem (a special case of Euler's theorem):
For $m=p$, where p is prime $=>u^{p-1}=1$ in Z_{p} for any integer u

Carmicheal's Theorem

The greatest order of an elements in Z_{m}^{*} is called Carmichael's function $\lambda(\mathrm{m})$
Number of invertible elements (units) is Euler function $\phi(33)=\phi\left(3^{*} 11\right)=(3-1)(11-1)=20$
The 20 units in Z_{33} are: $u=\{1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32\}=Z^{\prime},(\operatorname{gcd}(33, u)=1)$
Possible multipicative orders of units in Z_{33} are the divisors of $\lambda(33)=\operatorname{lc}[\phi(11), \phi(3)]=\operatorname{cm}(10,2)=0^{*} 2 / \operatorname{ccd}(10,2)=10$
\Rightarrow Possible orders are the divisors of 10 , which are $1,2,5,10$
Order of $22^{1}=2 \neq 1,2^{2}=4 \neq 1,2^{5}=32=-1 \neq 1 \Rightarrow$ order of 2 is 10
Order of $77^{1}=7 \neq 1,7^{2}=49=16 \neq 1,7^{5}=-13^{*} 16=-10 \neq 10 \Rightarrow 1 \Rightarrow$ order of 7 is 5 is 10
4. If order $\alpha=k$, then ord $\left(\alpha^{i}\right)=k$ iff $\operatorname{gcd}(k, i)=1$. By selecting $i=1,3,7,9$ we get $\operatorname{gcd}(10, i)=1$.
$\Rightarrow 2^{1}, 2^{3}, 2^{7}, 2^{9}$ or $2,8,29,17$ are 4 elements having order 10 Notice: No. of elements $\Rightarrow 5^{1}, 5^{3}, 5^{7}, 5^{9}$ or $5,26,14,20$ are 4 elements having order 10
$\Rightarrow 7^{1}, 7^{3}, 7^{7}, 7^{9}$ or $7,13,28,19$ are 4 elements having order 10
5. Order of $10: 100^{1}=10 \neq 1,10^{2}=100=1 \Rightarrow$ order of 10 is 2

Order of 32 : $32^{2}=32=-1 \neq 1, \quad 32^{2}=1 \Rightarrow$ order of 32 is 2
Order of 23 : $23^{1}=23=-10 \neq 1, \quad 23^{2}=(-10)^{2}=100=1 \Rightarrow$ order of 23 is 2
6. Order of 4 : $4^{1}=4 \neq 1,4^{2}=16 \neq 1,4^{5}=25^{\circ} 4=100=1 \Rightarrow$ order of 4 is 5

For $\operatorname{gcd}(5, i)=1 \Rightarrow i=1,2,4,4 \Rightarrow 4^{1}, 4^{2}, 4^{3}, 4^{4}$ or $4,16,31,25$ are elements having order 5

Problem 2-2: Elements of $Z_{17}=G F(17)$

How many invertible element under multiplication do exist in $\operatorname{GF}(17)$ (number of units in $\operatorname{GF}(17)$)?

Problem 2-3: Elements of GF(23)

How many invertible element under multiplication do exist $\mathrm{GF}(23)$ (number of units in $\mathrm{GF}(23)$)?
2. Which multiplicative orders are possible in $\mathrm{GF}(17)$?
4. Compute the order of the element 2 in $\mathrm{GF}(17)$ order?
5. Compute all other elements having the same order as 2.

Solution 2-2

Number of invertible elements is Euler function $\phi(17)=(17-1)=1617)=17-1=16$, namely $1,2,4,8,16$
3. Number of elements with order 1 is $\phi(1)=1$

Number of elements with order 2 is $\phi(2)=(2-1)=1$
Number of elements with order 4 is $\phi(4)=4(1-1 / 2)=$
Number of elements with order 8 is $\phi(8)=\phi\left(2^{3}\right)=8(1-1 / 2)=4$
Number of elements with order 16 is $\phi(16)=\phi\left(2^{4}\right)=16(1-1 / 2)=8$
4. Order of $2: 2^{1}=2 \neq 1, \quad 2^{2}=4 \neq 1, \quad 2^{4}=4^{2}=16=-1 \neq 1, \quad 2^{8}=\left(2^{4}\right)^{2}=-1^{2}=1 \Rightarrow$ order of 2 is 8

If order $\alpha=k$, then ord $(\alpha)=k$ iff $\operatorname{gcd}(k, i)=1$. by selecting $1=1,3,5,7$ we get $\operatorname{gcd}(8, i)=1$. $\Rightarrow 2^{1}, 2^{3}, 2^{5}, 2^{7}$ or $2,8,15,9$ are the 4 elements having order 8
2. Which multiplicative orders are possible in $\mathrm{GF}(23)$?
3. How many elements do exist from each possible order?
4. Compute the order of the element 2 in $\mathrm{GF}(23)$.

Compute all other elements having the same order as 2.
Compute the inverse of 2^{18} in $\mathrm{GF}(23)$ without using the gcd algorithm

Solution 2-3

Number of invertible elements is Euler function $\phi(23)=(23-1)=22$ elements
The possible multiplicative orders in $\mathrm{GF}(23)$ are the divisors of $23-1=22$, namely $1,2,11,22$
3. Number of elements with order 1 is $\phi(1)=1$

Number of elements with order 2 is $\phi(2)=(2-1)=1$
Number of elements with order 11 is $\phi(11)=(11-1)=1$
Number of elen
4. Order of 2 : $2^{1}=2 \neq 1,2^{2}=4 \neq 1,2^{4}=16=-7,2^{5}=-14=9,2^{10}=81=12,2^{11}=12^{*} 2=24=1 \Rightarrow$ order of 2 is 11

Horder $\alpha=k$, then ord (α).
$\rightarrow 212^{118} 2^{18}$
$2^{18}=2^{18^{\prime}+22}=2^{4}=16$. Check $2^{18}=\left(2^{9}\right)^{2}=6^{2}=13 \Rightarrow 16^{\star} 13=208=1$ in GF(23 .

Homework: Elements of \mathbf{Z}_{35}

How many invertible element under multiplication do exist Z_{35} (number of units in Z_{35})
2. Which multiplicative orders are possible in $Z_{35}{ }_{35}$?
3. Compute the order of all invertible elements in $Z^{*}{ }_{35}$.
4. Find the cycle length for all non-invertible elements

Homework: Elements of Z_{39}

How many invertible element under multiplication do exist Z_{39} (number of units in Z_{39}) Which multiplicative orders are possible in Z_{39}^{*} ?
Compute the order of all invertible elements in Z_{39}^{*}
. Find the cycle length for all non-invertible elements.

Homework: Analyze the structure of $\mathrm{GF}(29), \mathrm{GF}(83), \mathrm{Z}_{\mathbf{2}^{16}}$
$Z_{2^{n}}$ Is a widely used ring in modern cryptography

