

<u>6</u>

<u>14</u>

<u>16</u>

19

Shamir's Threshold Scheme set up
System set-up:
nsecrets are distributed securely to <u>nusers</u>. The (secret distributor), called here <u>Dealer</u> should then perform the following steps:
for Threshold =t, choose a polynomial f(x) = f₀ + f₁ x + f₂ x² + ... + f_{c1} x^{c1} With the secret K = f₀ = (0), where f₀ = *GF(p)*, *p* is a large prime integer.
The public values x₁ to x_n are selected randomly for n users. Dealer then computes the corresponding n shares for n participants S₁ = f(x₁) and sends securely every <u>share S₁</u> to the corresponding <u>participant P₁</u>.
Revealing the secret K:
The above function f(x) can be reconstructed to get K if at least t participants cooperate and disclose their shares to each other to get K (that is, t-shares (S₁s) need to be disclosed together).

<u>21</u>

<u>22</u>

Page: 21