
$\underline{1}$

3

4

6

7

9

8

10

11

12

13

15

17

(t,n) Threshold Scheme

A cryptographic (t,n) secret-sharing threshold scheme
Principle:
A secret K is divided into n mapped shares $s_{1} \ldots s_{n}(n->\infty)$
in such a way that the knowledge of:
any t or more s_{i} pieces makes K easily computable
any t-1 or less s_{i} shares leaves K completely undetermined.
\qquad
18

Shamir's Threshold Scheme

Basic idea*:
Shamir's t out of n Threshold Scheme is based on the fact that a polynomial $y=f(x)$ of degree ($t-1$) can only be uniquely defined by at least t points $\left(x_{i}, y_{i}\right)$ with distinct x_{i}.

This means that if we have n users each knows only one point on $f(x)$, then any group of at least t users can cooperate to generate the polynomial $f(x)$ as a common secret.
In other words: If less that t users cooperate they would not be able to construct $f(x)$ and share the secret

* Lagrange Interpolation: A polynomial of degree $\mathrm{t}-1$ can be uniquely interpolated from at least t points).

Shamir's Threshold Scheme set up

System set-up:

n secrets are distributed securely to n users. The (secret distributor), called here Dealer should then perform the following steps:

1. for Threshold $=\mathbf{t}$, choose a polynomial $f(x)=f_{0}+f_{1} x+f_{2} x^{2}+\ldots \quad+f_{t-1} x^{t-1}$ With the secret $K=f_{0}=f(0)$, where $f_{0} \in G F(p)$, p is a large prime integer.
2. The public values x_{1} to x_{n} are selected randomly for n users.

Dealer then computes the corresponding n shares for n participants $S_{i}=f\left(x_{i}\right)$ and sends securely every share S_{i} to the corresponding participant $\mathrm{P}_{\text {. }}$

Revealing the secret K :

The above function $f(x)$ can be reconstructed to get K if at least t participants cooperate and disclose their shares to each other to get K (that is, t-shares $(~ S i s)$ need to be disclosed together).

Basic Concept: Example of Lagrange Interpolation Shamir's Threshold Scheme

Shamir's Threshold Scheme

Secret reconstruction by tusers:
Using Lagrange interpolation formula, any t cooperating participants
can find the secret $\mathrm{K}=\mathrm{f}(0)=f_{0}$ by Lagrange Interpolation:

Only $\mathrm{t}-\mathrm{S}_{\mathrm{i}}$'s t points on $\left.\mathrm{f}(\mathrm{x})\right]$ are necessary to find $\mathrm{K}=\mathrm{f}(0)$
that is for $x=0, K=f(0)=\sum_{i=0}^{t-1} S_{i} L_{i}, \quad$ where $L_{i}=\prod_{j=0}^{t-1}-x_{i} /\left(x_{i}-x_{j}\right)$
All computations are modulo p (over GF(p)), where p is a large prime.
The system works similarly over GF (2^{m}).

