Introduction to Cryptology

Lecture 13-1- supplementary Summary of
DH, RSA , EIGamal and Rabin Locks Most used Crypto-System Locks

17.05.2023, v7

Review
 The One-Way Locks

 of
DH, RSA, EIGamal, Rabin Locks

1. Discrete Logarithm Lock
2. Factorization Lock
3. Elliptic-Curve Algebra

Conventional Diffie-Hellman Public Key Distribution System DH-Lock

Security Claim: $\log x_{a}$ or x_{b} are not computable from y_{a}, y_{b} (discret log problem is seen as unsolvable)

RSA-Lock (Hiding Function)
Use of Exponentiation in the Ring Z_{m} where, $m=p$. q such that p and q are two large secret primes

According to Euler Theorem:
$\left(\mathbf{M}^{\mathrm{E}}\right)^{\mathrm{Dmod} \phi(m)}(\bmod m)=\mathbf{M}^{\mathrm{E} .} \mathrm{D} \bmod \varphi(m)(\bmod m)=\mathbf{M}$
Security Claim: $\varphi(m)$ is only computable if p and q are known! That is attacker need to factorize m (Factorization problem is unsolvable)

EIGamal Crypto-System 1985
Basic idea: Using DH System in a different way

$\mathrm{R}=$ Random secret from sender
Security Claim: same as DH system, (discret log problem is unsolvable)

Rabin Secrecy-System (1979)

Security Claim: Computing the square root in a ring \mathbf{Z}_{m} is only possible if the ring modulus m is factored (Factorization problem is unsolvable)

Elliptic Curve
 Additive Groupe

1. For DH Key-Exchange
2. For ElGamal Crypto

El-Gamal Crypto-System
Using Elliptic Curve (EC) Algebra Over GF(2n) or GF(p)
System mapping: Substitute additioan Kobsitiz(1) and Victor S . Miller [2] in in 1985

Random Generator creates $\mathrm{R}=0 \ldots \mathrm{e}-1$, a new R is needed for every message (p is α 's order)

