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Knapsack Public-Key
Crypto-System
1978

g b Jk
Ralph Merkle Martin Hellman
Berkeley — Stanford University Stanford University
Published similar concept to Diffie-Hellmann system as a student at
Berkeley University
“Secure communications over insecure channels”

Commun ACM, April 1978 (Berkeley Univ.), submitted Aug. 1975

Based on: Knapsack problem as a One-Way Function
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Knapsack Problem as a One-Way Function*
Example: Given the following 6 items, each with its own weight:

W, B

Example: Few items with a total weight of 449 g are in the bag.
Question: Find which items are in the sack without opening it!

Weight= 449 g

n
Problem: Given the total weight of the knapsack =ZW.X. T

i=1 n
Find the binary vector X =[xy, X, ......], wherex; ={0,1} Weight = ZW X
Solution : X=[101010] R

- There is no algorithm known for finding X !!! (in the public literature

- The solution is easy if the knapsack is superincreasing
AKnapsack is a superincreasing one : ifany W, is greater than the sum of all other smaller weights.
Example: the binary weight system 20, 21,22 ... 2™ =1,2,4,8,16 ...

are used to represent an integer of n-bits
*Ref. J. Massey
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Merkle-Hellmann Crypto System (1978)*
(Broken by Shamir 1984)

1. Multiply each weight

by US113in Zigg 2 5 8 17 35 M select an easy knapsack

JFEAE) 27 167 108 130 174 63 Convert to hard knapsack

SO

2. P te locations —, .
andpublish 174 27 167 63_108 130 published knapsack

secret key is u = (i
Where ged (199,1

Encrypt:  X=[10 1010] Plaintext
-167+108 =449 Cryptogram

=118.449 mod 199=48 in Z,,
=48find x =[011010] in the easy knapsack

permute to get the original message  X=[10 101 0]

Conditions : gcd (u, m)=1and m> =W,
*source. J. Massey
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Summary: Widely Used Claimed One-Way Functions (OWF) /(Locks) are from Number Theory

Summary of “still claimed” One-way Functions (OWF) we introduced so far

Locking Un-Locking
a—> Y

a*mod -
X —i indas a—> ?

unprove
Alpasedo®

p— e
q p.q > m=p.q m —> ?
X E— —_—

Xemodm |—> y=x2 Y \y=?
m=p.q > m ——>| modm

In addition to that: New Algebra using additive Groups over Elliptic Curves
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Elliptic Curve Based Crypto-systems

Background: We introduced so far using the multiplicative cyclic group of the exponents of a
primitive element for building a system in which the discrete logarithm is not computable

o was selected as a primitive elementin GF(p) or GF(2™) having the maximum possible
multiplicative order in GF.

Thus {a' a? o .....a"=1} isacyclic group includingall field el
Claimed unsolved problem: If we know o, we do not know how to find i without exhaustive search
(discrete logarithm problem).

The basic arithmetic used was modular multiplication (or exponentiation modulo p or mod p(x)).

Question:
Avre there other similar groups offering less complex arithmetic with similar cryptographic properties?

The answer is yes with the following proposed algebra:

An additive groups is defined by additionin in an elliptic curve_system over GF(p) or GF(2).

Elliptic Curve: Other Additive Group for Cryptosystems

3

y [{Fen =04 v

Negation AddingP+Q AddingP+P =2

An Additive Group of order n was found using a primitive point P having the large additive order n

which can generate a large group. That is
P+P+P...+P=nP=e where e isthe neutral element of the group.

n-times (n is very large)

In this group it is still claimed that we do not know how to divide!.
Example: if we know that Y = 5 P-and we know P and Y, we do not know how to find 5 = Y/P.

Cryptographic significance: If a secret key K is multiplied by a known element P to get Y=KP.
IfY is publish with P, K is not possible to be found as it is not known how to compute K= Y/P .
This is equivalent to the discreet logarithm problem. The used algebra is over GF(p) or GF(2")

was suggested independently by Neal Koblitz and Victor S. Miller n 1985.
Page: 7 Page: 8
. ) EC- Examples in real fields 2/2
EC- Examples in real fields 1/2 P
¥ 2 " PHEB =0
_ / l RE111,264)
1 /
/ x
f/ —~ rren=0
s ! f 2P=R= (111, 264).
| reoeseamos, ( } f / N ‘
M ~ [
(R N
\ _ \ Y
P ¥ Y A LIS I
s \ 4 \
i Y et E Y Adding the points P and -P
; N Theline through P and -P is a vertical line which does not
b P eets P camnotingadied a5 previouslyie go the et point 0.
Therefore, the elliptic curve group includes the neutral element
point atinfinity 0. By definition, P + (-P) = 0. As a result of this
equation, P+ 0= Pis in the elliptic curve group. O s called the
of the elliptic curve groups all ellip
have an additive identity,
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Standardized Elliptic Curve Algebra over GF (IEEE 1363/D8) Multiplication in Elliptic Curve over GF (27
Used Koblitz Elliptic Curve equation (curves):  Adding two point: P+ Q=R How to multiply a point P by the scalar K.
yos Computing Q=K. P
b
[ .
Additionin Elliptic Curve over GF (2°) =y, ] [® Double & Add technique
(n should be prime for higher security) 1. Convert K into the binary form
X,y are elements in GF(2) Ext.ged! K = (KK ok k) with k (MSB) =1; ! vs
o ' s
Adding two point: P+ Q 2 g% g @==F
E is an Elliptic Curve (Koblitz) : y*+ xy=X’+a-x*+b 3. for i from r -1 downto 0 do
with b #0 (IEEE 1363/D8, 10.1999) a) '59" _ Q=—Q+Q -
X,= C+ita b) If k =1, then Set: Q Q+P |
P=(x,y;) and Q= (x,,) are two points on the curve. 4 ouput @ ]
| SelQ<—Q+Q| |SelQ<—Q+P
The sumis R=P @ Q, where R= (x;,y;) is computed

according to the right flow chart

X, |+—R _»[ Y, mE+F
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Double & Add Multiplication Algorithm
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Why Elliptic Curve Cryptosystems ECC ?

Key length and security motivations

Claimed key length for RSA, DSA and ECC for similar security level

Symmetric | ECC-based | RSAIDSA

B ‘scheme (modulus size
(key sizein | (size of nin In bits)
bits) | bits)

W2l | g
80 |

224

256

384

512

ECC system s still claimed to exhibit higher security level for the same key length!
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Conventional Diffie-Hellman
Public Key Distribution System
Using Additive Groups over Elliptic Curves

UserAsendsto B User B receives
o primitive element/ point o on EC with order e X {key of A
X, =secret key of A Y= @® X, public key of A ,» = secret key of
" : | X,e N (from0...e-1
X N(from ... o-1) Yu= a®X, public key of B €N )

Zpg= IZ@XBXN‘ Shared Secret: ZAB . Zpg= a®X, X,
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El-Gamal Crypto-System
Using Additive Groups over Elliptic Curves (EC) Algebra Over GF (2) or GF(p)

Neal Koblitz[1] and Victor S. Miller[2] in 1985
System maj . Substitute addition instead of instead of
Same can be done for any discrete log based cryplusystem like Diffie-Helman tec. ..

UserAsendstoB User B receives

o pnmmve element/ point & on EC with order
X, = secret key of A = @ ® X, public key of A x = :fc’rreto keg olA1
m e
X.& N(from0... e-1) = a® X, public key of B b€ ( 1)

Random Generator creates R=0 ... e-1, anew R is needed for every message (p is & ‘s order)
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Sample ECC NIST Standards

§ECCKoin|zCurve: E:y2+xy=x3+x*+h, E_;y’+xy=xi+ax’+1

Over GF(p) special primes Over GF(2")

Curve name Bitsinp n is selected as a prime integer!
ANSSIFRP256VI 256

BN(2, 254) 254 . . '
brainpoolP256t1 256 Imsducible Polynomia] Bits
Curvet174 251

Curve25519 255 P P IN

Curve383187 383 PO)= R4+t O+ 16
E-222 222

£:382 382 p)= S+ 4 233
E-521 521 (Trinomial)

Ed448 448

M-211 221 p(t)= B+ 124 4 54 1 283
M-383 383

M-511 511 -

NIST P-224 24 pY)= £+ £741 40
NIST P-256 256 (Trinormial)

NIST P-384 384

Secp256K1 256
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