Introduction to Cryptology

Lecture-13
Public-Key Cryptography Knapsack one-way function, Elliptic-Curve System
17.05.2023, v48

Outlines

- Historical Overview !
- Knapsack One Way Function (OWF)
- Elliptic Curve Cryptography
- Summary of OWF's
\qquad

Knapsack Public-Key Crypto-System 1978

Ralph Merkle
Berkeley \rightarrow Stanford University
Published similar concept to Diffie-Hellmann system as a student at
Berkeley University
Secure communications over insecure channels"
Commun ACM, April 1978 (Berkeley Univ.), submitted Aug. 1975
Based on: Knapsack problem as a One-Way Function

Knapsack Problem as a One-Way Function* Example: Given the following 6 items, each with its own weight:

- There is no algorithm known for finding X !!! (in the public literature
-The solution is easy if the knapsack is superincreasing
A Knapsack is a superincreasing one: if any \mathbf{W}_{i} is greater than the sum of all other smaller weights. Example: the binary weight system $2^{0}, 2^{1}, 2^{2} \ldots 2^{n-1}=1,2,4,8,16 \ldots$

$$
\text { are used to represent an integer of } n \text {-bits }
$$

Elliptic Curve Based Crypto-systems

Background: We introduced so far using the multiplicative cyclic group of the exponents of a primitive element for building a system in which the discrete logarithm is not computable
α was selected as a primitive element in $\mathrm{GF}(\mathrm{p})$ or $\mathrm{GF}\left(2^{m}\right)$ having the maximum possible multiplicative order in GF.

Thus $\left\{\begin{array}{llll}\alpha^{1} & \alpha^{2} & \alpha^{3} \ldots ~ & \alpha^{n}=1\end{array}\right\}$ is a cyclic group including all non-zero field elements.
Claimed unsolved problem: If we know α^{i}, we do not know how to find i without exhaustive search (discrete logarithm problem).
The basic arithmetic used was modular multiplication (or exponentiation modulo por $\bmod p(x)$).

Question

Are there other similar groups offering less complex arithmetic with similar cryptographic properties?
The answer is yes with the following proposed algebra
An additive groups is defined by addition in in an elliptic curve system over $\mathrm{GF}(\mathrm{p})$ or $\mathrm{GF}\left(2^{\mathrm{m}}\right)$. was suggested independently by Neal Koblitz and Victor S. Miller n 1985.

Elliptic Curve: Other Additive Group for Cryptosystems

An Additive Group of order n was found using a primitive point P having the large additive order which can generate a large group. That is
$P+P+P \ldots \ldots+P=n P=e$ where e is the neutral element of the group.

n -times (n is very large)

In this group it is still claimed that we do not know how to divide
Example: if we know that $Y=5 \mathrm{P}$ and we know P and Y , we do not know how to find $5=Y$
Cryptographic significance: If a secret key K is multiplied by a known element P to get $Y=K P$.
This is equivalent to the discreet logarithm computation problem. The used algebra is over $\operatorname{GF}(p)$ or $\operatorname{GF}\left(2^{m}\right.$

EC- Examples in real fields $2 / 2$

Adding the points \mathbf{P} and -P
Adding the points \mathbf{P} and $-\mathbf{P}$
The line through P and $-P$ is a vertical line which does n

 have an additive identity.

Standardized Elliptic Curve Algebra over GF (IEEE 1363/D8)

Conventional Diffie-Hellman Public Key Distribution System Using Additive Groups over Elliptic Curves

Sample ECC NIST Standards

ECC Koblitz Curve: $E: y^{2}+x y=x^{3}+x^{2}+b, \quad E_{a}: y^{2}+x y=x^{3}+a x^{2}+1$			
Over GF(p) special primes p		Over GF($\mathbf{2}^{\text {n }}$)	
Curve name	Bits in p	n is selected as a prim	
ANSSI FRP256v1	256		
BN $(2,254)$ brainpoolP256t1	$\begin{aligned} & 254 \\ & 256 \\ & 256 \end{aligned}$	Irreducible Polynomial	Bits
Curve1174	251		
Curve25519 Curve383187	255 383	$p(t)=t^{163}+t^{7}+t+t^{3}+1$	163
E-222	222		
E-382	382	$p(t)=t^{233}+t^{74}+1$	233
E-521	521	(Trinomial)	
Ed448	$\begin{aligned} & 448 \\ & 221 \end{aligned}$	$p(t)=t^{283}+t^{12}+t^{7}+t^{5}+1$	
M-383	383	$p(t)=t^{283}+t^{12}+t^{7}+t^{5}+1$	283
M-511 NIST P-224	$\begin{aligned} & 511 \\ & 224 \end{aligned}$	$p(t)=t^{409}+t^{87}+1$	409
NISTP-256	- 224	(Trinomial)	
NIST P-384 secp256k1	$\begin{aligned} & 384 \\ & 256 \\ & 256 \end{aligned}$		

