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Introduction to Cryptology

17.05.2023, v48

Lecture-13

Public-Key Cryptography

Knapsack one-way function, Elliptic-Curve System
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• Historical Overview !

• Knapsack One Way Function (OWF)

• Elliptic Curve Cryptography

• Summary of OWF‘s

Outlines
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Knapsack Public-Key

Crypto-System

1978

Based on: Knapsack problem as a One-Way Function

Ralph Merkle
Berkeley → Stanford University

Published similar concept to Diffie-Hellmann system as a student at 

Berkeley University

“Secure communications over insecure channels” 

Commun ACM, April 1978 (Berkeley Univ.), submitted Aug. 1975

Martin Hellman
Stanford University
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Problem: Given the total weight of the knapsack =

Find  the binary vector X = [x1, x2 ......],  where xi = {0,1}

Solution  :    X = [ 1 0 1 0 1 0 ] 

- There is no algorithm known for finding X  !!! (in the public literature

- The solution is easy if the knapsack is superincreasing




n

i
ii

xw
1

Weight =

Knapsack Problem as a One-Way Function*

A Knapsack is a superincreasing one : if any Wi is greater than the sum of all other smaller weights.

Example: the binary weight system 20, 21, 22 … 2n-1 = 1, 2, 4, 8, 16 …

are used to represent an integer of n-bits
* Ref.  J. Massey

Example: Few items with a total weight  of 449 g are in the bag.

Question: Find which items are in the sack without opening it!

W1                  W2             W3                     W4             W5             W6

Example: Given the following 6 items, each with its own weight:

Weight= 449 g


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1
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Merkle-Hellmann Crypto System (1978)*
(Broken by Shamir 1984)

2      5       8      17       35      71         select an easy knapsack

Encrypt: X = [ 1  0   1  0  1  0 ] Plaintext  

Y = 174 + 167 + 108      = 449          Cryptogram

1. Multiply each weight

by u= 113 in Z199

27   167   108    130    174     63         Convert to hard knapsack  

Conditions : gcd ( u , m) = 1 and  m   Wi

secret key is u = (m, u) = (199,113)

Where  gcd (199,113)=1

* source.  J. Massey

Decrypt : Y´ = u-1 . Y = 118 . 449 mod 199 = 48 in   Z199

from Y´ =48 find   x´ = [0 1 1 0 1 0]  in the easy knapsack

permute to get the original message       X = [ 1  0   1  0  1  0 ]

118 =113-1 in Z199

2. Permute locations

and publish
174   27    167     63     108    130       published knapsack  

Public key

Page :  6
bfolieq.drw

Summary of “still claimed” One-way Functions (OWF) we introduced so far

Summary: Widely Used Claimed One-Way Functions (OWF) /(Locks) are from Number Theory

ax mod p
a
x Y=ax ?

Y
a

x=loga Y

p.q
p

q m=p.q ?m p

q

X2 mod m
X

m=p.q
Y=X2 Y=?

mod m

Y
X

m

Discrete log 

Problem (DH Lock)

Factorization

Problem (RSA Lock)

Factorization

Problem (Rabin Lock)

Locking Un-Locking

In addition to that: New Algebra using additive Groups over Elliptic Curves 
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Elliptic Curve Based Crypto-systems
Background: We introduced so far using the multiplicative cyclic group of the exponents of a 

primitive element for building a system in which  the discrete logarithm is not computable

 was selected as a primitive element in GF(p) or GF(2m) having the maximum possible 

multiplicative order in GF.

Thus    { 1 2 3 ........ n =1 }     is a cyclic group including all non-zero field elements.  

Claimed unsolved problem: If we know i, we do not know how to find i without exhaustive search

(discrete logarithm problem). 

The basic arithmetic used was modular multiplication (or exponentiation modulo p or mod p(x)).

Question:

Are there other similar groups offering less complex arithmetic with similar cryptographic properties?

The answer is yes with the following proposed algebra:

An additive groups is defined by addition in in an elliptic curve system over GF(p) or GF(2m). 

was suggested independently by Neal Koblitz and Victor S. Miller n 1985. 
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Elliptic Curve: Other Additive Group for Cryptosystems

An Additive Group of order n was found using a primitive point P having the large additive order n 

which can generate a large group. That is

P + P + P ........+ P = n P =  e   where   e  is the neutral element of the group.

n-times (n is very large)

P

-P
(P+Q)

-(P+Q)

P

2P

Negation Adding P + P = 2P

-2P=-(P+P)
P

Q

Adding P + Q

4P

-4P
x

y
F(x,y) = 0

In this group it is still claimed that we do not know how to divide!.
Example: if we know  that Y = 5 P and we know P and Y, we do not know how to find 5 = Y/P.

Cryptographic significance: If a secret key K is multiplied by a known element P to get Y=KP.

If Y is publish with  P, K is not possible to be found as it is not known how to compute K= Y/P .

This is equivalent to the discreet logarithm computation problem. The used algebra is over GF(p) or GF(2m)

y

x

y

x
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EC- Examples in real fields 1/2
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EC- Examples in real fields 2/2

Adding the points P and -P
The line through P and -P is a vertical line which does not 

intersect the elliptic curve at a third point; thus the points P and 

-P cannot be added as previously to get the “neutral point” 0. 

Therefore, the elliptic curve group includes the neutral element 

point at infinity 0. By definition, P + (-P) = 0. As a result of this 

equation, P + 0 = P is in the elliptic curve group. 0 is called the 

additive identity of the elliptic curve group; all elliptic curves 

have an additive identity. 
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P = Q ?

B    x1
-1

 =  x1 + A  B

C    2

X3  C +  + ( x2 + x1 )+ a

A  ( y2 + y1 ) B  ( x2 + x1 )-1

 =  A  B

E   ( x1 + x3 ) F  y1 + x3

Y3  E + F

C    2

X3  C +  + a

A  y1
Addition in Elliptic Curve  over GF (2n)
(n should be prime for higher security)

x, y  are elements in GF(2n)

Adding two point:  P + Q

E  is an Elliptic Curve (Koblitz) : 

with                    (IEEE 1363/D8, 10.1999)

P = (x1,y1) and Q = (x2,y2) are two points on the curve.

The sum is R= P  Q , where  R= (x3,y3) is computed 

according to the right  flow chart 

bxaxxyy  232   

0b

noyes

X3

If P = (x, y)

then -P = (x, -y)

Ext. gcd !

Standardized Elliptic Curve Algebra over GF (IEEE 1363/D8)

bxaxxyy  232   

Adding two point:  P + Q = R

R

Used Koblitz Elliptic Curve equation (curves):
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i := r  1 

i = i -1

Set  Q             P

Set  Q           Q + PSet  Q             Q + Q

Output  Q

yes                              no

1. Convert K into the binary form:

K  = ( k 
r
k 

r-1
...... k 

1
k 

0
)  with  k 

r
( MSB) = 1;

2. Set     :     Q P

3. for  i from  r  1 down to 0  do

a) Set:       Q Q + Q

b) If  k 
i

= 1,  then  Set:    Q Q + P

4. Output  Q.

Multiplication in Elliptic Curve  over GF (2n)

How to multiply a point P by  the scalar K.

Computing Q = K . P

Double &  Add technique

Ki = 0 ?

If  i=-1

Double &  Add Multiplication Algorithm
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Why Elliptic Curve Cryptosystems  ECC ?

Key length and security motivations

Claimed key length for RSA, DSA and ECC for similar security level

ECC system is still claimed to exhibit higher security level for the same key length!
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Conventional Diffie-Hellman 

Public Key Distribution System 

Using Additive Groups over Elliptic Curves 

B,

Shared Secret: ZAB

yayb A,

[  Xa ]  Xb

ZAB=    Xa Xb

 primitive element/ point  on EC with order e
Xa = secret key of A

Xa N (from 0 …  e-1)

User A sends to B     User B receives     

ya =   Xa public key of A                
Xb = secret key of A

Xb N  (from 0 .. e-1)
yb =   Xb public key of B                

[  Xb ]  Xa

ZAB=    Xa Xb

Page :  15
bfolieq.drw

El-Gamal Crypto-System 
Using Additive Groups over Elliptic Curves (EC) Algebra Over GF (2n) or GF(p)

+ +

yb R

-Xb mod e

M M    ( XbR) M

 primitive element/ point  on EC with order e
Xa = secret key of A

Xa N (from 0 …  e-1)

 R

R

yb

(  R-Xb)

Random Generator creates  R = 0 ... e-1, a new R is needed for every message (p is  ‘s order)

User A sends to B     User B receives     

ya =   Xa public key of A                

 R

- ( XbR) XbR

/

m

/

m

Xb = secret key of A

Xb N  (from 0 .. e-1)
yb =   Xb public key of B                

System mapping: Substitute addition instead of multiplication and multiplication instead of exponentiation!

Same can be done for any discrete log based cryptosystem like Diffie-Helman tec. ..

Neal Koblitz[1] and Victor S. Miller[2] in 1985
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Over GF(p) special primes p
Curve name Bits in p

ANSSI FRP256v1   256

BN(2, 254) 254

brainpoolP256t1   256

Curve1174 251

Curve25519 255

Curve383187 383

E-222 222

E-382 382

E-521 521

Ed448 448
M-211 221

M-383 383

M-511 511

NIST P-224 224

NIST P-256 256

NIST P-384 384

secp256k1 256

Over GF(2n) 

n is selected as a prime integer!

Irreducible Polynomial Bits

p(t) =  t163 + t7 + t  + t3 + 1    163

p(t) =    t233 + t74 + 1 233

(Trinomial)

p(t) = t283 + t12 + t7+ t5 + 1 283

p(t) =   t409 + t87 + 1                                409

(Trinomial)

Sample ECC NIST Standards

ECC Koblitz Curve:   E: y2 + x y = x3 + x2 + b,       Ea: y
2 + x y = x3 + a x2 + 1  


