

Lecture-13 Public-Key Cryptography Knapsack one-way function, Elliptic-Curve System

17.05.2023, v48

Page: 3

Page : 2

Elliptic Curve Based Crypto-systems

Background: We introduced so far using the multiplicative cyclic group of the exponents of a element for building a system in which the discrete logarithm is not computable

a was selected as a primitive element in GF(p) or GF(2^m) having the maximum possible multiplicative order in G

Thus $\{\alpha^1 \ \alpha^2 \ \alpha^3 \ \dots \ \alpha^n = 1\}$ is a cyclic group including all non-zero field elements.

<u>Claimed unsolved problem:</u> If we know α^i , we do not know how to find i without exhaustive search (discrete logarithm problem). The basic arithmetic used was modular multiplication (or exponentiation modulo p or mod p(x)).

Question:

Are there other similar groups offering less complex arithmetic with similar cryptographic properties? The answer is yes with the following proposed algebra:

Page : 7

An <u>additive groups</u> is defined by addition in an <u>elliptic curve</u> system over GF(p) or GF(2^m). was suggested independently by Neal Koblitz and Victor S. Miller n 1985.

EC- Examples in real fields 1/2 P (2.35, -1.86 Q (0.1, 0.836) -R (3.89, 5.62) R (3.89, -5.62) P + (-P) = 0R+0-R-080-56 $y^2 = x^3 - 6x + 6$ $x^2 = x^3 \cdot 4x + 0.67$ Page : 9

ECC Koblitz Curve: E: $y^2 + x y = x^3 + x^2 + b$, E_a : $y^2 + x y = x^3 + a x^2 + 1$			
Over GF(p) special primes p		Over GF(2 ⁿ)	
Curve name	Bits in p	n is selected as a prime ir	nteger!
ANSSI FRP256v1	256		
BN(2, 254)	254	Irreducible Polynomial	Bits
prainpoolP256t1	256		
Curve1174	251		
Curve25519	255	$p(t) = t^{163} + t^7 + t + t^3 + 1$	163
Curve383187	383		
-222	222	(h) (222 - 24 - 4	
E-382	382	$p(t) = t^{233} + t^{74} + 1$	233
E-521	521	(Trinomial)	
Ed448	448		
M-211	221	$p(t) = t^{283} + t^{12} + t^7 + t^5 + 1$	283
M-383	383		
M-511	511	$p(t) = t^{409} + t^{87} + 1$ (Trinomial)	409
NIST P-224	224		
NIST P-256 NIST P-384	256 384		
	384		
secp256k1	256		