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Introduction to Cryptology

17.05.2023, v54

Lecture-12

Public-Key Cryptography

Quadratic Residues and „Rabin Lock“
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Rabin Lock for a Public-Key System

is Based on the

Square Root Problem 

in a Finite Ring

(1979)
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Rabin Crypto-System 1979

Basic idea: Squaring in a ring modulo m=pq.

Michael Oser Rabin, 1931, Breslau, Germany

Claim: Square root computation in the ring Zm , where 

m=p•q is not feasible If the factors p&q of the modulus m 

are not known!
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Squaring: Y  = x 2 (mod  m)

Squaring and Square Roots in Zm (Rabin Lock)

Claim: the function  Y = X 2 is one-way in  Zm if m is composite!

x 2
x

Y=x 2

Y =?

Inverse function is unknown in Zm

x

We investigate two cases for computing the square root in Zm:

1. The modulus m is a prime p that is [ in GF(p) ]

2. The modulus is non-prime, [ in the Ring Zm, where m is a product of two primes p and q].

Page :  5
bfolieq.drw

Example: y  =  x 2 (mod  7)    i.e.   in GF(7)

First Case : Squaring and Square Roots in GF(p)
Quadratic Residues QR, and Quadratic non-Residues QNR in GF(p)

x    1 2 3 4  5 6

y= x 2 1 4 2 2 4 1

Fact: There are (p-1)/2   QR and   (p-1)/2   QNR  in GF(p)

 4 = 2  and 5       [   2 in GF(7) ]            
 1 = 1  and 6       [  1 in GF(7) ]

 2 = 3  and 4       [  3 in GF(7) ]

1, 2, 4 are the QR’s  in GF(7)

(Elements having square root)

 3 = does not exist in GF(7)

 6 = does not exist in GF(7)
 5 = does not exist in GF(7)                              

3, 5, 6 are the QNR’s  in GF(7)

(Elements having no square root)

Quadratic Residues QR

Quadratic non-Residues QNR

Squaring in GF(p)
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First Case : Squaring and Square Roots in GF(p)
How to identify Quadratic Residues QR, and Quadratic non-Residues QNR

How to identify QR and QNR in GF(p) :

If   GF (p)  and   0  then:

-  is QR if      (p-1)/2 =  1 (mod  p)   ((p-1)/2 - 1)  = 0

-  is QNR if      (p-1)/2 = -1 (mod  p)   ((p-1)/2 +  1)  = 0

Note: There are no deterministic techniques known to generate QNRs in GF(p) !

Proof:

The roots of   x(p-1) - 1  =   ( x(p-1)/2 - 1)   ( x(p-1)/2 + 1)   are the units of GF(p)

If   is the SQRT of  then  = 2

=>  (p-1)/2 = p-1 =1 (Fermat Theorem)   =>  ( (p-1)/2 - 1 ) = 0 are the QR’s above

the others are the QNR’s. The count of each is (p-1)/2



2
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Computing Square Roots in GF(p)

How to compute square roots for Quadratic Residues QR?

Case 1 : If (p-1)/2 is odd (that is p+1 is divisible by 4)

and  is a QR in GF(p), 

then the two square roots of  are:

 =   (p+1)/4

and  -  = p - 

Case 2: if  (p-1)/2 is even, then see the following Algorithm

delivers both roots for quadratic residues in GF(p):
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Case 2: A Square-Root Computation

in GF(p) for (p-1)/2  even

(Shanks’ Algorithm)

SQRT of β is

g = T-1 • β(Q+1)/2

P (P-1=2iQ, i 2, Q odd)

Find a QNR mod p, α

Compute  g = αQ

β    (β = a QR mod p)

I       i , T        1, L       0 

Compute  δ = βQ

T        T• (g )

I         I - 1

L       L +1 

δ2I-2
= T2I-1

?

STOP

I  = 2 ?

YES

NO YES

START

NO

2L

*

* J. L.  Massey
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Example: m=p. q  is a composite of two primes  m= 3 x 5

The function  y   x 2 (mod  15)    is shown below:

Second Case : Squaring and Square Roots in a Ring  Zm
( m = p . q    is not a prime )

x    1 2   4 7   8   11   13   14           3    5    6   9   10   12

y = x 2 1   4   1   4   4    1     4      1           9    10   6   6   10   9

Fact: for m= p . q There are (p -1) (q -1)/4 QR in  Z*m.

Each QR has 4 distinct square roots

The units : 1, 4 are the QR’s  in Z*15

The units : 2, 7, 8, 11, 13, 14 are the QNR’s  in Z*15

units Non-units

1, 4 6, 9, 10

Quadratic Residues  1 = 1  and 14      [  1 in Z15) ]
= 4  and 11       [  4 in Z15) ]

 4 = 2  and 13     [  2 in Z15) ]
= 7  and  8      [  7 in Z15) ]

Squaring in Zm
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Computing Square Roots in Zm if  m = p . q

Fact: If m= p q where p and  q, are distinct odd primes and two different 

SQRT’s  and  of some QR in Zm are known, where    and   -,  

then:

either  gcd ( + , m) =   p

or        gcd ( + , m) =  q

!! There is a Computational Equivalence Between 

Factoring m= p q and taking Square Roots  in Zm !!!

No algorithm is known for computing the square roots of any unit 

element in Zm if the prime factors of m, p and q are not known
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Computing Square Roots in Zm if m  factors p , q are known

four  square roots for a QR element c modulo m do exist: r1, r2, r3, and r4

That is:    c = r1, r2, r3, r4

Computing the square roots if p+1 and q+1, are divisible by 4:

1. Compute a and b satisfying gcd(p,q) = a ∙ p + b ∙ q = 1, using the extended gcd

algorithm.

2. Compute r = c(p+1)/4 mod p  (Square root mod p).

Compute s = c(q+1)/4 mod q  (Square root mod q) .

3.  Apply the Chines Remainder Theorem: 

x = ( a· p · s  +  b · q · r ) mod m

y = ( a · p · s - b · q · r ) mod m
=> the four-square roots are:   r1 = x, r2 = -x

r3 = y, r4 = -y

Computing the square roots if p and  q  mod 4 ≠ 3 (p+1 and q+1 are not divisible by 4) 

require using Shanks’ algorithm in page 8 to compute r and s
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Rabin Secrecy-System (1979)

M C = M2 mod mb M

Public directory

Public Key ma = pa . qa

User A sends M  to B     User B receives     
ma = public key of A                

C

mb = public key of B                

Public-Key mb = pb . qb

C   mod mb

pb . qb

(M)2 mod mb

Use square root Algorithm 

modulo m = p.q for known  

p and q.

Secret key : pb . qb

Secret key : pa . qa

Encryption Decryption

mb

4 square root values for M would result.

How to identify the correct one? 

(see next example)
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Example: Rabin Secrecy-System
Setup and calculate Cryptogam and decrypt the message M=5 for a user with the 

public key mb = 7 x 11 =77

M = 5 = 101

M’= 101101=45
C = 452 mod 77= 23

M =45

see next page 

Public directory

ma = pa . qa

User A sends M  to B     User B receives     

ma = public key of A                

C=23

mb = 77 public key of B                

mb = pb . qb = 7 x 11 = 77

C mod mb

23   mod 77

mb = pb . qb= 7 x 11

(M’)2 mod mb

Mb = 77
Use square root Algorithm 

modulo m = p.q for known  

p and q. See next pageDuplicate the pattern of M
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Solution Cont.: See square root algorithm calculations in Zm:

Encryption:

Messages must be in the range from 1 to 7, so this system of redundancy will work. Start with data bits 

M=1012 or 510. The replication gives M’= 1011012 or 4510.

Then c = M’2 mod 77 = 23. 

Decryption:

Take p = 7, q = 11, and n = 77. 

Compute gcd(11,7) = (-3)*7 + 2*11 = 1  =>  that is  a = -3 and b = 2.

To compute the square roots of C modulo 77  compute r and s :

r = c(p+1)/4 mod p =>       r = 232 mod 7 = 4

s = c(q+1)/4 mod q =>      s = 233 mod 11 = 1

Then    x = (a*p*s + b*q*r) mod m    => x = ((-3)*7*1 + 2*11*4) mod 77 = 67

y = (a*p*s - b*q*r) mod m    => y = ((-3)*7*1 - 2*11*4) mod 77 = 45

x and y are two of the four square roots, and the remaining two are

-x mod 77 = -67 mod 77 = 10

-y mod 77 = -45 mod 77 = 32

In binary, the four-square roots are 67 = 10000112

45 = 01011012

10 = 00010102

32 = 01000002

One of these roots is M’. Only 45 has the required repetition redundancy, so this is the only possible 

message M’=45 = 101101 => M = 101.

The only sqare root

with two equal blocks

delivers the correct result
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Alternative constellation for Rabin Secrecy-System

M

M’ = M | T C = (M’)2 mod mb

Public directory

ma = pa . qa

User A sends M  to B     User B receives     

ma = public key of A                

mb = public key of B                

mb = pb . qb

C mod mb

mb = pb . qb

(M’)2 mod mb

Mb

M1 | T1

M2 | T2

M  | T

M3 | T3

Concatenate an agreed-on 

tag T of t-bits to M

select M

If T is 

unique,

Otherwise 

repeat with 

other T’

Probability of getting same 

T in more than one root

is   ≈ 2-t in best case
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Rabin Signature Scheme Based on Rabin Lock

Setup: n = p .q   is public, p and q are two secret primes generated by the signer

if AND

Signing: The message hash value H(m) is signed, where m is the clear message 

H(x) should be a hash function with high collision resistance!

H(m) is QR 

in GF(p) and GF(q)

The signature S is computed as:

The  signed message M is :   (M,S)

Verification: Anybody knows H(s) and the public key n  can verify the signature as

follows: 2( ) modH m S n
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(Rabin-Lock based application-1)

Fair Coin-Flipping Using a Blind Communication

User A User B

(m) randomly choose a

unit u in Zm ,  gcd (m,u)=1

and computes t = u2 (mod m)
t

Compute t = u’

p, q

u’

Either: u’ {u,-u},

then B can factor m

gcd (u’ +u , m) =   p

and sends m factors p, q

as response 

Or: u’ {u,-u},

then B can not factor m 

and sends u as response

Prob. [u’  {u,-u}] = 50%

A chooses

m = p q

Flipping result  u or ( p , q )

B wins if he can factor and deliver p and q

A wins if  B can not  factor m
Gets 4 roots:

t = + x

= + y 

One of them is u!

A can not guess 

which one is u !

u´= x or y
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(Rabin-Lock based application-2)

SQUASH Hash Function (Shamir) 2007-2008

Key Idea: Square the input value X in a ring Zm and take a part

of the resulting square vector as a hash value

m= is a composite with unknown factorization

x 2X Y = X2 mod m

10100100 1101..  10 1….10101

m =21277−1 = 2k-1  was the first

propsal by Shamir as a compsit

with unknown factorization

Shamir: “Our third observation is that Mersenne 

moduli are not only easy to store, but they also make 

the computation of X2 (mod m=2k−1) particularly 

simple: Since 2k=1 (mod m), we just compute the 

double sized X2, and then numerically add the top 

half x1 to the bottom half x2. More precisely, 

if X2 = x1 2
k  + x2 , then   X2  mod m =  x1+x2    “

1101..   10H(X) =

Extract t-bits as hash bits

t

2k bitsk bits

k bits

(m: k bits modulus)

2k bits


