Introduction to Cryptology

Lecture-12
Public-Key Cryptography
Quadratic Residues and „Rabin Lock"
17.05.2023, v54

Rabin Lock for a Public-Key System is Based on the Square Root Problem in a Finite Ring (1979)

Squaring and Square Roots in Z_{m} (Rabin Lock)
Claim: the function $Y=X^{2}$ is one-way in Z_{m} if m is composite!

```
Squaring: \(\quad \mathbf{Y}=x^{2} \quad(\bmod m)\)
```


Inverse function is unknown in Z_{m}

```
We investigate two cases for computing the square root in }\mp@subsup{Z}{m}{}\mathrm{ :
```

1. The modulus m is a prime p that is [in $\operatorname{GF}(p)$
2. The modulus is non-prime, $\left[\right.$ in the Ring Z_{m}, where m is a product of two primes p and q].
\qquad

First Case: Squaring and Square Roots in GF(p)
How to identify Quadratic Residues QR, and Quadratic non-Residues QNR
How to identify QR and QNR in GF(p):
If $\beta \in \mathbf{G F}(\mathbf{p})$ and $\beta \neq 0$ then:
$-\beta$ is QR if $\beta^{(p-1) / 2}=1 \quad(\bmod p) \Rightarrow\left(\beta^{(p-1) / 2}-1\right)=0$
$-\beta$ is QNR if $\quad \beta^{(p-1) / 2}=-1 \quad(\bmod p) \Rightarrow\left(\beta^{(p-1) / 2}+1\right)=0$
Proof:
$\frac{\text { Proof }}{\text { The roots of }} \mathrm{x}^{(p-1)}-1=\left(\mathrm{x}^{(p-1) / 2}-1\right)\left(x^{(p-1) / 2}+1\right)$ are the units of $G F(p)$
If α is the SQRT of β then $\beta=\alpha^{2}$
If α is the SQRT of β then $\beta=\alpha^{2}$
$\Rightarrow \beta^{(p-1) / 2}=\alpha^{p-1}=1$ (Fermat Theorem) $\Rightarrow\left(\beta^{(p-1) / 2}-1\right)=0$ are the QR's above
the others are the QNR's. The count of each is $(\mathrm{p}-1) / 2$

Note: There are no deterministic techniques known to generate QNRs in $\operatorname{GF}(\mathrm{p})$!

Computing Square Roots in GF(p)

How to compute square roots for Quadratic Residues QR?
Case 1: If $(p-1) / 2$ is odd (that is $p+1$ is divisible by 4) and β is a QR in $\operatorname{GF}(\mathrm{p})$,
then the two square roots of β are:

$$
\begin{aligned}
\alpha & =\beta^{(p+1) / 4} \\
\text { and }-\alpha & =p-\alpha
\end{aligned}
$$

Case 2: if $(\mathrm{p}-1) / 2$ is even, then see the following Algorithm delivers both roots for quadratic residues in $\mathrm{GF}(\mathrm{p})$:

Case 2: A Square-Root Computation in $\operatorname{GF}(\mathrm{p})$ for $(\mathrm{p}-1) / 2$ even (Shanks'Algorithm)

*J.L. Masse

Second Case : Squaring and Square Roots in a Ring Z_{m}

$$
\text { (} \mathrm{m}=\mathrm{p} \cdot \mathrm{q} \text { is not a prime) }
$$

Fact: for $m=p . q$ There are $(p-1)(q-1) / 4 Q R$ in $Z^{*}{ }_{m}$. Each QR has 4 distinct square roots

Computing Square Roots in Z_{m} if $m=p . q$

No algorithm is known for computing the square roots of any unit element in Z_{m} if the prime factors of m, p and q are not known

$!!$ There is a Computational Equivalence Between
Factoring $\mathrm{m}=\mathrm{p} q$ and taking Square Roots in $\mathrm{Z}_{\mathrm{m}}!!!$

Fact: If $\mathrm{m}=\mathrm{p} \mathrm{q}$ where p and q , are distinct odd primes and two different SQRT's α and β of some QR in Z_{m} are known, where $\alpha \neq \beta$ and $\alpha \neq-\beta$, then:

```
either gcd (\alpha+\beta,m)= p
```

 or \(\operatorname{gcd}(\alpha+\beta, m)=q\)
 Computing Square Roots in Z_{m} if m factors p, q are known
four square roots for a QR element c modulo m do exist: r_{1}, r_{2}, r_{3}, and r_{4}
That is: $\sqrt{\mathrm{c}}=\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}, \mathrm{r}_{4}$
Computing the square roots if $p+1$ and $q+1$, are divisible by 4 :

1. Compute a and b satisfying $\operatorname{gcd}(p, q)=a \cdot p+b \cdot q=1$, using the extended $g c d$ algorithm.
2. Compute $\mathbf{r}=\mathrm{c}^{(p+1) / 4} \bmod \mathrm{p}($ Square root mod p$)$.

Compute $\mathbf{s}=\mathrm{c}^{(\mathrm{q}+1) / 4} \operatorname{modq}($ Square root $\bmod \mathrm{q})$.
3. Apply the Chines Remainder Theorem:

$$
\begin{array}{l:c}
x=(a \cdot p \cdot s+b \cdot q \cdot r) & \bmod m \\
y=(a \cdot p \cdot s-b \cdot q \cdot r) & \bmod m
\end{array} \quad=>\text { the four-square roots are: } \begin{aligned}
& r_{1}=x, \\
& r_{3}=y, \\
& r_{2}=-x \\
& r_{4}=-y
\end{aligned}
$$

Computing the square roots if p and $q \bmod 4 \neq 3(p+1$ and $q+1$ are not divisible by 4$)$ require using Shanks algorithm in page 8 to compute r and s

Rabin Secrecy-System (1979)


```
Solution Cont.: See square root algorithm calculations in }\mp@subsup{\mathbf{Z}}{m}{m}
Encryption:
Messages must be in the range from 1 to 7, so this system of redundancy will work. Start with data bits
    M=1012 or }\mp@subsup{5}{10}{}\mathrm{ . The replication gives M'= 1011012 or 4510.
Then c=M'/}\operatorname{mod}77=2
Takep=7,q=11, and n=77.
Compute gcd (1,7)=(-3)\cdot7+2\cdot11 =1 => that is a=-3 and b=2
To compute the square roots of C modulo }77\mathrm{ compute r and s
    r=(p+1)] 4odp => r=23'mod 7=4
    s=c(9+1)4}\operatorname{modq \
Then x=(a* p
    y=(a**** - b* q}\mp@subsup{q}{}{*}r)\quad\operatorname{mod}m\quad=>y=((-3\mp@subsup{)}{}{*}\mp@subsup{7}{}{*}+1-\mp@subsup{2}{}{*}+1\mp@subsup{1}{}{*}4)\operatorname{mod}77=4
x and y are two of the four square roots, and the remaining two a
* - mod 77 =-67 mod 77 = 10
```



```
        lal
        10=00010102
One of these roots is M}\mp@subsup{M}{}{\prime}\mathrm{ . Only 45 has the required repetition redundancy, so this is the only possibi
message M'=45=101101 }=>>M=101
```

\square Page :

Alternative constellation for Rabin Secrecy-System

(Rabin-Lock based application-1)
Fair Coin-Flipping Using a Blind Communication

Rabin Signature Scheme Based on Rabin Lock

Setup: $\mathrm{n}=\mathrm{p} . \mathrm{q}$ is public, p and q are two secret primes generated by the signer
Signing: The message hash value $H(m)$ is signed, where m is the clear message
if $\quad H(m)^{\frac{p-1}{2}} \bmod p=1 \quad$ AND $\quad H(m)^{\frac{q-1}{2}} \bmod q=1 \quad \begin{aligned} & -\cdots(m) \text { is } \mathrm{Q} \\ & \text { in } \mathrm{FF}(\mathrm{p}) \text { and }\end{aligned}$ The signature S is computed as:

$$
S=\left(\left(p^{q-2} H(m)^{\frac{q+1}{4}} \bmod q\right) p+\left(q^{p-2} H(m)^{\frac{p+1}{4}} \bmod p\right) q\right) \bmod (p \cdot q)
$$

The signed message M is : (M, S)
Verification: Anybody knows $H(s)$ and the public key n can verify the signature as follows: $\quad H(m)=S^{2} \bmod n$
$H(x)$ should be a hash function with high collision resistance!

