
1

Page : 1
bfolieq.drw

Introduction to Cryptology

17.05.2023, v54

Lecture-12

Public-Key Cryptography

Quadratic Residues and „Rabin Lock“

Page : 2
bfolieq.drw

Rabin Lock for a Public-Key System

is Based on the

Square Root Problem

in a Finite Ring

(1979)

Page : 3
bfolieq.drw

Rabin Crypto-System 1979

Basic idea: Squaring in a ring modulo m=pq.

Michael Oser Rabin, 1931, Breslau, Germany

Claim: Square root computation in the ring Zm , where

m=p•q is not feasible If the factors p&q of the modulus m

are not known!

Page : 4
bfolieq.drw

Squaring: Y = x 2 (mod m)

Squaring and Square Roots in Zm (Rabin Lock)

Claim: the function Y = X 2 is one-way in Zm if m is composite!

x 2
x

Y=x 2

Y =?

Inverse function is unknown in Zm

x

We investigate two cases for computing the square root in Zm:

1. The modulus m is a prime p that is [in GF(p)]

2. The modulus is non-prime, [in the Ring Zm, where m is a product of two primes p and q].

Page : 5
bfolieq.drw

Example: y = x 2 (mod 7) i.e. in GF(7)

First Case : Squaring and Square Roots in GF(p)
Quadratic Residues QR, and Quadratic non-Residues QNR in GF(p)

x 1 2 3 4 5 6

y= x 2 1 4 2 2 4 1

Fact: There are (p-1)/2 QR and (p-1)/2 QNR in GF(p)

 4 = 2 and 5  [ 2 in GF(7)] 
 1 = 1 and 6  [1 in GF(7)]

 2 = 3 and 4  [3 in GF(7)]

1, 2, 4 are the QR’s in GF(7)

(Elements having square root)

 3 = does not exist in GF(7)

 6 = does not exist in GF(7)
 5 = does not exist in GF(7) 

3, 5, 6 are the QNR’s in GF(7)

(Elements having no square root)

Quadratic Residues QR

Quadratic non-Residues QNR

Squaring in GF(p)

Page : 6
bfolieq.drw

First Case : Squaring and Square Roots in GF(p)
How to identify Quadratic Residues QR, and Quadratic non-Residues QNR

How to identify QR and QNR in GF(p) :

If   GF (p) and   0 then:

-  is QR if  (p-1)/2 = 1 (mod p)  ((p-1)/2 - 1) = 0

-  is QNR if  (p-1)/2 = -1 (mod p)  ((p-1)/2 + 1) = 0

Note: There are no deterministic techniques known to generate QNRs in GF(p) !

Proof:

The roots of x(p-1) - 1 = (x(p-1)/2 - 1) (x(p-1)/2 + 1) are the units of GF(p)

If  is the SQRT of  then  = 2

=> (p-1)/2 = p-1 =1 (Fermat Theorem) => ((p-1)/2 - 1) = 0 are the QR’s above

the others are the QNR’s. The count of each is (p-1)/2

2

Page : 7
bfolieq.drw

Computing Square Roots in GF(p)

How to compute square roots for Quadratic Residues QR?

Case 1 : If (p-1)/2 is odd (that is p+1 is divisible by 4)

and  is a QR in GF(p),

then the two square roots of  are:

 =  (p+1)/4

and -  = p - 

Case 2: if (p-1)/2 is even, then see the following Algorithm

delivers both roots for quadratic residues in GF(p):

Page : 8
bfolieq.drw

Case 2: A Square-Root Computation

in GF(p) for (p-1)/2 even

(Shanks’ Algorithm)

SQRT of β is

g = T-1 • β(Q+1)/2

P (P-1=2iQ, i 2, Q odd)

Find a QNR mod p, α

Compute g = αQ

β (β = a QR mod p)

I i , T 1, L 0

Compute δ = βQ

T T• (g)

I I - 1

L L +1

δ2I-2
= T2I-1

?

STOP

I = 2 ?

YES

NO YES

START

NO

2L

*

* J. L. Massey

Page : 9
bfolieq.drw

Example: m=p. q is a composite of two primes m= 3 x 5

The function y  x 2 (mod 15) is shown below:

Second Case : Squaring and Square Roots in a Ring Zm
(m = p . q is not a prime)

x 1 2 4 7 8 11 13 14 3 5 6 9 10 12

y = x 2 1 4 1 4 4 1 4 1 9 10 6 6 10 9

Fact: for m= p . q There are (p -1) (q -1)/4 QR in Z*m.

Each QR has 4 distinct square roots

The units : 1, 4 are the QR’s in Z*15

The units : 2, 7, 8, 11, 13, 14 are the QNR’s in Z*15

units Non-units

1, 4 6, 9, 10

Quadratic Residues  1 = 1 and 14  [1 in Z15)]
= 4 and 11  [4 in Z15)]

 4 = 2 and 13  [2 in Z15)]
= 7 and 8  [7 in Z15)]

Squaring in Zm

Page : 10
bfolieq.drw

Computing Square Roots in Zm if m = p . q

Fact: If m= p q where p and q, are distinct odd primes and two different

SQRT’s  and  of some QR in Zm are known, where    and   -,

then:

either gcd ( + , m) = p

or gcd ( + , m) = q

!! There is a Computational Equivalence Between

Factoring m= p q and taking Square Roots in Zm !!!

No algorithm is known for computing the square roots of any unit

element in Zm if the prime factors of m, p and q are not known

Page : 11
bfolieq.drw

Computing Square Roots in Zm if m factors p , q are known

four square roots for a QR element c modulo m do exist: r1, r2, r3, and r4

That is: c = r1, r2, r3, r4

Computing the square roots if p+1 and q+1, are divisible by 4:

1. Compute a and b satisfying gcd(p,q) = a ∙ p + b ∙ q = 1, using the extended gcd

algorithm.

2. Compute r = c(p+1)/4 mod p (Square root mod p).

Compute s = c(q+1)/4 mod q (Square root mod q) .

3. Apply the Chines Remainder Theorem:

x = (a· p · s + b · q · r) mod m

y = (a · p · s - b · q · r) mod m
=> the four-square roots are: r1 = x, r2 = -x

r3 = y, r4 = -y

Computing the square roots if p and q mod 4 ≠ 3 (p+1 and q+1 are not divisible by 4)

require using Shanks’ algorithm in page 8 to compute r and s

Page : 12
bfolieq.drw

Rabin Secrecy-System (1979)

M C = M2 mod mb M

Public directory

Public Key ma = pa . qa

User A sends M to B User B receives
ma = public key of A

C

mb = public key of B

Public-Key mb = pb . qb

C mod mb

pb . qb

(M)2 mod mb

Use square root Algorithm

modulo m = p.q for known

p and q.

Secret key : pb . qb

Secret key : pa . qa

Encryption Decryption

mb

4 square root values for M would result.

How to identify the correct one?

(see next example)

3

Page : 13
bfolieq.drw

Example: Rabin Secrecy-System
Setup and calculate Cryptogam and decrypt the message M=5 for a user with the

public key mb = 7 x 11 =77

M = 5 = 101

M’= 101101=45
C = 452 mod 77= 23

M =45

see next page

Public directory

ma = pa . qa

User A sends M to B User B receives

ma = public key of A

C=23

mb = 77 public key of B

mb = pb . qb = 7 x 11 = 77

C mod mb

23 mod 77

mb = pb . qb= 7 x 11

(M’)2 mod mb

Mb = 77
Use square root Algorithm

modulo m = p.q for known

p and q. See next pageDuplicate the pattern of M

Page : 14
bfolieq.drw

Solution Cont.: See square root algorithm calculations in Zm:

Encryption:

Messages must be in the range from 1 to 7, so this system of redundancy will work. Start with data bits

M=1012 or 510. The replication gives M’= 1011012 or 4510.

Then c = M’2 mod 77 = 23.

Decryption:

Take p = 7, q = 11, and n = 77.

Compute gcd(11,7) = (-3)*7 + 2*11 = 1 => that is a = -3 and b = 2.

To compute the square roots of C modulo 77 compute r and s :

r = c(p+1)/4 mod p => r = 232 mod 7 = 4

s = c(q+1)/4 mod q => s = 233 mod 11 = 1

Then x = (a*p*s + b*q*r) mod m => x = ((-3)*7*1 + 2*11*4) mod 77 = 67

y = (a*p*s - b*q*r) mod m => y = ((-3)*7*1 - 2*11*4) mod 77 = 45

x and y are two of the four square roots, and the remaining two are

-x mod 77 = -67 mod 77 = 10

-y mod 77 = -45 mod 77 = 32

In binary, the four-square roots are 67 = 10000112

45 = 01011012

10 = 00010102

32 = 01000002

One of these roots is M’. Only 45 has the required repetition redundancy, so this is the only possible

message M’=45 = 101101 => M = 101.

The only sqare root

with two equal blocks

delivers the correct result

Page : 15
bfolieq.drw

Alternative constellation for Rabin Secrecy-System

M

M’ = M | T C = (M’)2 mod mb

Public directory

ma = pa . qa

User A sends M to B User B receives

ma = public key of A

mb = public key of B

mb = pb . qb

C mod mb

mb = pb . qb

(M’)2 mod mb

Mb

M1 | T1

M2 | T2

M | T

M3 | T3

Concatenate an agreed-on

tag T of t-bits to M

select M

If T is

unique,

Otherwise

repeat with

other T’

Probability of getting same

T in more than one root

is ≈ 2-t in best case

Page : 16
bfolieq.drw

Rabin Signature Scheme Based on Rabin Lock

Setup: n = p .q is public, p and q are two secret primes generated by the signer

if AND

Signing: The message hash value H(m) is signed, where m is the clear message

H(x) should be a hash function with high collision resistance!

H(m) is QR

in GF(p) and GF(q)

The signature S is computed as:

The signed message M is : (M,S)

Verification: Anybody knows H(s) and the public key n can verify the signature as

follows: 2() modH m S n

Page : 17
bfolieq.drw

(Rabin-Lock based application-1)

Fair Coin-Flipping Using a Blind Communication

User A User B

(m) randomly choose a

unit u in Zm , gcd (m,u)=1

and computes t = u2 (mod m)
t

Compute t = u’

p, q

u’

Either: u’ {u,-u},

then B can factor m

gcd (u’ +u , m) = p

and sends m factors p, q

as response

Or: u’ {u,-u},

then B can not factor m

and sends u as response

Prob. [u’  {u,-u}] = 50%

A chooses

m = p q

Flipping result u or (p , q)

B wins if he can factor and deliver p and q

A wins if B can not factor m
Gets 4 roots:

t = + x

= + y

One of them is u!

A can not guess

which one is u !

u´= x or y

Page : 18
bfolieq.drw

(Rabin-Lock based application-2)

SQUASH Hash Function (Shamir) 2007-2008

Key Idea: Square the input value X in a ring Zm and take a part

of the resulting square vector as a hash value

m= is a composite with unknown factorization

x 2X Y = X2 mod m

10100100 1101.. 10 1….10101

m =21277−1 = 2k-1 was the first

propsal by Shamir as a compsit

with unknown factorization

Shamir: “Our third observation is that Mersenne

moduli are not only easy to store, but they also make

the computation of X2 (mod m=2k−1) particularly

simple: Since 2k=1 (mod m), we just compute the

double sized X2, and then numerically add the top

half x1 to the bottom half x2. More precisely,

if X2 = x1 2
k + x2 , then X2 mod m = x1+x2 “

1101.. 10H(X) =

Extract t-bits as hash bits

t

2k bitsk bits

k bits

(m: k bits modulus)

2k bits

