
1

Page : 1
bfolieq.drw

Introduction to Cryptology

15.05.2023, v48

Lecture-11

Public-Key Cryptography

ElGamal Public-Key Crypto-System

Page : 2
bfolieq.drw

• Public-key Objective

• ElGamal Public-Key Encryption System

• ElGamal Public-Key Signature System

• ElGamal Security considerations

• Public Key Signature Standard

Lecture Outlines

Page : 3
bfolieq.drw

Y = E (Z,X)

Channel Message

Sender Receiver

Message
X E (Z,X) D (Z,Y) X

The Target of Public Key Cryptography

Ciphering De-Ciphering

Secret Key = Z

Z

Secret Key Channel

Z

Public-Key Register

drops out the need for secret key-

agreement completely

Page : 4
bfolieq.drw

ElGamal Crypto-System, 1985

Taher ElGamal: BsC, EE from Cairo University,

MsC and PhD Stanford University advisor M. Hellmann

ElGamal Cryptosystem became a NIST standard called DSA in 1994.

Basic idea: Multiplication instead of exponentiation

Taher ElGamal

Page : 5
bfolieq.drw

ElGamal Crypto-System 1985

X

Z

M M • Z =C X

Z-1

M

Is that possible?: Yes,

By using groups arithmetic in in GF !

Basic idea: Multiplication instead of exponentiation

The inverse key Z-1 should not be computable if Z is known

Page : 6
bfolieq.drw

ElGamal Crypto-System 1985

X

Z-1 = (R) –x = - X . R

M

That is possible by using arithmetic in in GF(q) !

Basic idea: Multiplication instead of exponentiation for encryption

Z = yR = x·R

R= Random secret generated ad-hoc by sender

XM C = M . X . R

 R

y = X
Secret Key = x

Open Key y= X

Sender ReceiverPublic directory:

 primitive element in GF(q)

 -X . R

This is actually DH-key!

2

Page : 7
bfolieq.drw

ElGamal Secrecy-System (1985)

X X

(yb)R

M C = M . Xb . R M

 primitive element in GF(p)
Xa = secret key of A

 Xa

Xb = secret key of B

 Xb

r = R

R

yb

(r)-Xb = - Xb. R

Random Generator : R = 1 ... p-1

User A encrypts M to B User B decrypts

ya = Xa public key of A

yb = Xb public key of B

 R

- Xb = (p-1) - Xb

Z-1 = - Xb. RZ = Xb. R

/

m

/

m-bits

m = log2 p

r

C

Notice 2: The scheme applies similarly over GF(2m) , with as a primitive element in GF(2m) .

Notice 1: a new R is needed for every M! Otherwise, Z can be easily revealed if M is known!

- Xb

Page : 8
bfolieq.drw

Example 1: Setup ElGamal Encryption System using GF(11). Send the message M=10 from user A to B. The

secret key of B is6and for A is 7

X X

(9)R

- Xb = -6

M=10 C = M . Xb . R = 10 . 3 =8
M =32 mod 11 =10

 = 2 = primitive element in GF(11)
Xa = secret key of A=7

 7 = 7

Xb =6= secret key of B

Yb= Xb= 26 = 9

r =2 8 =3

R=8

yb

(3)-Xb = (3)4 =4

Random Generator : R = 1 ... p-1 ,

we select R= 8

User A sends M to B User B receives

ya = Xa public key of A = 7

yb = Xb public key of B = 9

 R

-Xb = (p-1) – Xb

-Xb = (11-1)-6 = 4

Z=9 8 = (2 6)8 = 248 mod 10 =28 =3

r=3

C=8

Solution :
Computing order of =2: 22=41, 23=8, 24=5, 25=10 1, => order of 2 is 10 => 2 is a primitive element !.

p=11=2 . 5+1, Possible orders = divisors of p-1=2x5, that is 1,2,5,10.

(4)

Notice : If an attacker knows

one message, say M=10

The ecryption key Z can be revealed simply

as Z= M-1.C= 10-1.8 mod 11 =3

Page : 9
bfolieq.drw

ElGamal Crypto-System (1985)

• based on discrete logarithm problem

• Security is as that of DH system

• DL problem needs less key-bits than RSA

for the same security

• Asymmetric workload: good for some

applications

• ElGamal encryption is probabilistic,

meaning that a single plaintext would

be encrypted to many possible ciphertexts

as a new random R is required for each

encrypted block..

Disadvantages Advantages

• The cryptogram needs more bits

than the plaintext (double)

• A new random is needed for

every encrypted message

• Asymmetric workload: bad for

some applications

Page : 10
bfolieq.drw

ElGamal Signature Scheme

Signed Message

M

k -1 (M - r . Xa) mod (p-1) = S

Then M is authentic.
User A cannot deny

having signed message M

 is primitive in GF(p)
Xa = Secret Key of A

 Xa = ya

k

User A signs M Verifier

ya = public key of A

k Random unit in Zp-1

That is: gcd (k, p-1) = 1

r = k

M

S

r

 M = ya
r . r S mod p

If

public directory

p, , ya

Page : 11
bfolieq.drw

Digital Signature Standard DSS (1994)
Explicit true signature based on ElGamal Signature System (1985)

Secure Hash Algorithm

(SHA) see later
M

H(M) 160 bits

Digital Signature Algorithm

(DSA)

Random

Source

160 bits 160 bits

(r , S) SignatureM

k

Signed Message

Data digest (compression)

using Hash functions

Page : 12
bfolieq.drw

Digital Signature Algorithm DSA

Standardized (1994) Based on ElGamal Signature Scheme

Signed Message

M

or H(M)

k -1 (H(M) + r . Xa) in GF(q) = S

Then M is authentic

 is element in GF(p) with order q

where q = large prime (160 bits)

(q divides p-1)Xa = Secret Key of A

 Xa = ya

k

User A signs M Verifier

ya = public key of A

k Random unit in GF(q)

For which gcd (q,k)=1 is valid

k = 1 to q-1 (160 bit)

Rq [Rp(k)] = r

M

S

r

Rq(M . S -1)
Rp[. ya] = U

Rq(r . S -1)

If

- p is a prime with 512 ... 1024 bits, q divides p-1 with a size of 160 bits,

- fresh k is required for every message!

public directory

p, q, , ya

r = Rq(U)
160 bits

160 bits

3

Page : 13
bfolieq.drw

Example 2: 1. Sign the message M=6 by using the Digital Signature Algorithm DSA, Use GF(p)=GF(11).

2. Check the resulting electronic signature

Signed Message M=6

M = 6

or H(M)

k -1 (M + r . Xa) in GF(q)=3(6+4x3) mod 5=4 = S

This true, Thus M is authentic

 =3 is element in GF(p=11) with order q=5

where 5 = large prime
Xa = Secret Key of A =3

ya =3 3 = 5 in GF(11)

K=2

User A signs M Verifier

ya = 5= public key of A

K=2 Random invertible mod (q=5)

K-1 = 3 (mod 5)

R5[R11(3
2)] = 4 = r

M=6

S=4

r=4

Rq(M . S -1)
Rp[. ya] = U

Rq(r . S -1)

If

public directory

p, q, , ya

Check if r = Rq(U)

4 = R5(9)

4 = 4

R5(6 . 4)
U=R11[3 . 5] = 9

R5(4 . 4)

Solution:
Computing order of =3: 32=91, 33=5, 34=4, 35=1 => order of 3 is 5

P=11=2 . 5+1, Possible orders = divisors of p-1=2x5, that is 1,2,5,10. Select q=5

11, 5, 3, 5

Page : 14
bfolieq.drw

ElGamal Signature System (1985), DSS (1994)

• Computations on Signer site are

less complex than verifier site

• Security is based on the

discrete logarithm problem which is

still seen as computationally

infeasible.

Disadvantages Advantages

• A new random is required

to sign every message

• more computations than RSA

are needed

• DSS may be less secure than

RSA as the security in GF(q)

with the order of about 160 Bits

Page : 15
bfolieq.drw

Security of ElGamal Public Key Crypto-System

(Equivalent to DH system)

Security considerations and known facts:

1. Based on the assumption/claim that the discrete logarithm is still not

efficiently computable according to the public literature

2. A primitive element from GF(p) or GF(2m) is used to make exhaustive

search algorithms infeasible. If y =t , only y and are known. To break the

system, we need to find t. To get t , is repeatedly multiplied by itself i times

when i =y, then t=i.

The order of (as a primitive element) is p-1 in GF(p) or 2m-1 in GF(2m).

Therefore, p is selected as 1000 to 4000 bits prime or m> 1000.

3. Caution: There is no evidence that no efficient algorithms can be found to

break the system.

4. p-1 should have large prime factor to make the discrete logarithm computation

infeasible (p is called a strong prime).

Page : 16
bfolieq.drw

Hash Functions

Iterated Hash Function: generates a digest of the data after being sequentially

processed through the so-called Hash function. In general as follows:

Hash
Mapping

Hi

Hi-1

H0 Initial value memory

xi

Input String

X = (x1 x2 ...xi xn) Output H is the digest of Input X :

H = Hash(H0 , X)

Example: SHA (Secure Hash Algorithm) proposed as a standard with DSA

with N=160 bits (exposed to many attacks !) not more recommended !!!

N bits: size of hash

value (digest)

Hash functions are needed to generate message digest

Non-linear

state machine

Page : 17
bfolieq.drw

Few Recommended

“Practical Hash Functions”

by deploying

“Block Ciphers”

Page : 18
bfolieq.drw

Hash Functions
Based on block ciphers

DM Scheme (Davis and Meyer)

Input String

X = (x1 x2 ...xi xn)

Digest of Input X is:

H = Hash(H0 , X)

BC: Block Cipher

KEY
Hi

Hi-1

Hi = Exi (Hi-1) Hi-1

/ N

/

N

Cipher key length = Hash Block length = N

x Y

4

Page : 19
bfolieq.drw

BC: Block Cipher

KEY

Cipher key length = 2 x Cipher block length N

Hash Functions
Based on block ciphers

LM Scheme (Lai and Massey 1992)

Input String

X = (x1 x2 ...xi xn)

Digest of Input X is:

H = E (H0 , X)

Hi

Hi-1

Hi = E (Hi-1)
/ N

/

N

Hi-1| xi

N /

Page : 20
bfolieq.drw

BC

Hi-1

Hi

xi BCg

Hi

xi

Hi-1

Davis-Meyer Miyaguchi-Preneel

Traditional Hash Functions
Based on deploying block ciphers (BC)

(well known constellations. See NIST standards)

BC: Block Cipher

state

BCg

Hi-1

Hi

xi

Matyas-Meyer-Oseas

g: key size adapter

X

Y

key

Page : 21
bfolieq.drw

Block-Cipher based Hash Functions alternatives 1/2

Source: Handbook of Applied Cryptography

by Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, CRC Press (October 16, 1996) (available free of charge on the WEB)

Page : 22
bfolieq.drw

Block-Cipher based Hash Functions alternatives 2/2

Source: Handbook of Applied Cryptography

by Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, CRC Press (October 16, 1996) (available free of charge on the WEB)

