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Introduction to Cryptology

09.05.2023, v41

Lecture-10

Public-Key Cryptography

RSA Rivest-Shamir-Adelmann Public-Key System  
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• Historical Overview !

• RSA Public-Key Encryption System

• RSA Public-Key Signature System

• RSA Security considerations

Lecture Outlines

Page :  3

Y = E (Z,X)

Channel Message

Sender Receiver

Message
X E  ( Z,X ) D  ( Z,Y ) X

The Target of Public Key Cryptography

Ciphering De-Ciphering

Secret Key =   Z

Z

Secret Key Channel

Z

Public-Register

To replace that secret key-

agreement completely
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User A     User B

Basic Public Key Secrecy System (RSA system1978)

RSA: Rivest-Shamir-Adleman, MIT, USA

(Mechanical Lock simulation: user A sends a message to B)

Public register

Close

Kc 

open   (  )Kc (mod m)

Kc

M

MKc

MKc.Ko = M

Ko= Kc-1

(MKc)Ko

Ko
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Y = E (Zp,X)

Channel
X

Message

Sender Receiver

Message

E ( Zp,X ) D ( Zs,Y )

Conventional Public-Key Crypto-system
(using asymmetric keys)

Secret-Key   Zs

Public-Key   Zp Public Directory
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Public-Key   Zp
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Public-Key Secrecy System RSA 1978

K-close

K-open

(Rivest Shamir Adelmann) MIT, USA  !!

Trap-door One Way Function !

RSA key idea to implement such a lock: is based mainly on Euler theorem

and on the two unproved claims:

1. Euler function for any integer m is only computable if  the factorization of m 

is known. 

2. Factorization is considered as computationally hard and unsolved problem

for m = p1    p2    p3  .... pt

e1 e2 e3 et (m) = m ( 1 - ) ( 1 - ) …
P2
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M E (mod m)         ENCRYPTION

Security Considerations: m   is a large composite  (m=p q),  p and q are two large secret 

primes. To break the system (m) is required to compute D = E-1 modulo (m). However, (m) 

can only be computed if p and q are known. Therefore, the system can only be broken if  and 

only if:  m can be factored OR  (m) can be found somehow without factorization!

E

(        )  

D

M E (mod m)     DECRYPTION

D

To get M, the following should hold:     E . D  = 1    or  D = E-1 in the exponent 

That is E and D should be invertible  modulo (m) !   Or   gcd (E, (m) ) =1

(  M E )D mod (m) = M E. D mod (m) =  M

RSA-Lock (Hiding Function) Uses Exponentiation in the Ring Zm

Where m = p.q ,  p and q are two large secret primes

Open key

Secret key
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User B

Nb

Eb

User A

Na

Ea

Design Template for

RSA Public Key Secrecy System

USER A:

Na = pa . qa open modulus of A

pa . qa tow secret large primes 

(Na) = (pa-1).(qa -1)

Ea = open Encryption key of A

Da =  Ea
-1 [mod (Na) ]

USER B:

Nb = pb . qb open modulus of B

pb . qb tow secret large primes 

(Nb) = (pb-1).(qb -1)

Eb = open Encryption key of B

Db =  Eb
-1 [mod (Nb) ]

Open directory

A sends Message M  to B:
DbY= M mod Nb

(Encrypt)

Eb

Condition: gcd [ Eb , (Nb) ] = 1Condition: gcd [Ea , (Na) ] = 1

Y
Eb Db

= M mod Nb =M

(Decrypt)

Number of possible keys = [(Nb)]Number of possible keys = [(Na)]
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Security of RSA Public Key System

RSA system can be broken by:

1. Factoring m = p . q

2. Computing (m) somehow without factoring m.

(m) = (p -1)(q -1) = m - p - q + 1  

 s =  (p + q)  =  m - (m) + 1

m = p . q

 p or q   =  ( s   s2 - 4 m ) / 2

However,   factorization is computationally equivalent to computing Euler function (m)
Proof:

Is Exponentiation  y = a x in  Zm a  One-Way Function ?

- Theoretically not (no proof that (m) is not computable if we do not know p and q !!)

- Practically  (m) computation is dificult if : m is a product of two large strong primes!
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No consistent and reliable answer (only claims according to the state of the art!):

In general:

Factorization Complexity is O (√m)

That is, if the modulus m is an integer in the range of 2n bits
To factor m, a computational complexity proportional to 2 n/2 is required.

! There are still ongoing secret and open research on factorization!

! Therefore, there are published results and unpublished results!

RSA Security and State of the Art in Factorization

In the public literature;

In number theory, the general number field sieve (GNFS) is the most efficient classical 

algorithm known for factoring integers larger than 10100. Heuristically, its complexity for 

factoring an integer n (consisting of ⌊log2 n⌋ + 1 bits) is of the form: 

Factorization is a business of mathematicians !
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1. How to choose large primes p,q for the modulus m=pq?
Select primes randomly by using “miller test” or “Pocklington theorem” or other refined 
versions for generating primes. 

2. Relationship between p and q
- Difference |p-q| should be neither too small nor too large.

- gcd(p-1, q-1) should not be large.

- Both p-1 and q-1 should contain large prime factors (strong primes). The ideal case is:
q, p should be strong primes - such that (p–1)/2 and  (q-1)/2 are primes.
Examples:  83 = 2x41 + 1 ,  107= 2x53 + 1

3. Selecting e and d ?
- Neither d nor e should be small.

- d should not be smaller than n1/4.   
(For d < n1/4 a polynomial time algorithm may determine d).

Designing adequate and good RSA cryptosystem

Many other considerations and refinements may appear 
according to the current state of the open research!
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Message  M

Signature  Sa

of user A

Signed Message

Message M

to be signed

Public-Key Signature Scheme

Public Directory

Ea Verification Key for A

Decrypting 

signature by Ea

And check if 

decryption 

reveals  M

Accept

Reject

Verification Process

Message

Public-Key

encryption

Signature Sa

Encrypted M by Da

Encrypting 

by secret-

key Da

Signing Process

7 8

9 10

11 12

https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Computational_complexity_theory
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Design Template for the

RSA Public Key Signature System

A signs Document M for B:

M
Da (M,S)

Signed Message
S

Da Ea
= M     mod Na=M´ (Verify M´=M)?= S mod Na

User B

Nb

Eb

User A

Na

Ea

USER A:

Na = pa . qa open modulus of A

pa . qa two secret large primes 

(Na) = (pa-1).(qa -1)

Ea = open Encryption key of A

Da =  Ea
-1 [mod (Na) ]

USER B:

Nb = pb . qb open modulus of B

pb . qb twosecret large primes 

(Nb) = (pb-1).(qb -1)

Eb = open Encryption key of B

Db =  Eb
-1 [mod (Nb) ]

Open directory

gcd [ Eb , (Nb) ] = 1gcd [Ea , (Na) ] = 1

Ea

If M´= M then the signature is true
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User B

33

3

USER B:

Nb = 3. 11 open modulus of B

pb . qb two secret large primes 

(Nb) = (pb-1).(qb -1) =20

3 = Eb=open Encryption key of B

Db =  Eb
-1 [mod (Nb) ] =7

gcd [ Eb , (Nb) ] = 1

gcd(3,20)=1

Solution:

User A

55   

7   

USER A:

Na = 11 x 5  open modulus of A

pa . qa two secret large primes 

(Na) = (pa-1).(qa -1)

= (11-1)(5-1) = 40

7= Ea= open Encryption key of A

Da =  7-1 [mod 40) ] =23

Open directory

gcd [Ea , (Na) ] = 1

gcd(7,40)=1

A sends Message M=5 to B:

7
26 mod 33 =  5 = M

(Decrypt)

Y = 5 mod 33=  26
(A Encrypts M)

3 Y = 26

M’=143  mod 33 = 5 = M
(Verify)

S= 57 mod 33 = 14
(B signes M)

S = 14
Security Gap:
Notice that anybody can 

decrypt S to disclose M!
Any other solution?    

Example: Construct RSA secrecy and signature system using the two prime pairs 11, 5 and 

3,11. Encrypt the message M=2 sent to user B. Let B signs M and send his signature back to A.
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Live Example: sending a secret document M from B to A encrypted as Yba expecting B to sign 

it back securely. Then A decrypts it and encrypts it to B as  Yab and signs Yab to B.

User B

77

17

USER B:

Nb = 7. 11 open modulus of B

pb . qb two secret large primes 

(Nb) = (pb-1).(qb -1) =60

17 = open Encryption key of B

Db =  Eb
-1 [mod (Nb) ] =-7=53

gcd [ Eb , (Nb) ] = 1

Gcd(3,20)=1

Solution:

User A

143   

43   

USER A:

Na = 13 x 11  open modulus of A

pa . qa two secret large primes 

(Na) = (pa-1).(qa -1)

= (13-1)(11-1) = 120

43= open Encryption key of A

Da= 43-1 mod 120=-53=-53+120= 67

Open directory

gcd [Ea , (Na) ] = 1

gcd(43,120)=1

B encrypts Message M=24 to A:

M=YDa = 4167 mod 143 =  24 
(Decrypt)

Yba = 2443 mod 143 =  41
(B Encrypts M)

Yba = 41

Yab=MEb mod 77= 2417 mod 77=40

S = (Yab)
Da mod 143 

S = (40)67 = 105
(Signing the encrypted M to B)

40, S=105

(Signature)

10543 mod 143 =  40= Yab

M= 4053 mod 77 = 24
(B checks)

A encrypts M back to B as Yab then signs Yab.:

12

3 4

B verifies:

A decrypts Yba:

13 14

15
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