Introduction to Cryptology

Lecture-10
Public-Key Cryptography RSA Rivest-Shamir-Adelmann Public-Key System

09.05.2023, v41

3

RSA key idea to implement such a lock: is based mainly on Euler theorem
and on the two unproved claims:

1. Euler function for any integer m is only computable if the factorization of m is known.

$$
\text { for } m=p_{1}^{e_{1}} p_{2}^{e_{2}} p_{3}^{e_{3}} \ldots p_{t}^{e_{t}} \rightarrow \quad \varphi(m)=m\left(1 \frac{1}{P_{1}}\right)\left(1-\frac{1}{P_{2}}\right) \ldots
$$

2. Factorization is considered as computationally hard and unsolved problem

7

Security of RSA Public Key System

```
Is Exponentiation y=ax in Z a One-Way Function?
    -Theoretically not (no proof that }\overline{\varphi}(\textrm{m})\mathrm{ is not computable if we do not know p and q !!)
    - Practically }\varphi(\textrm{m})\mathrm{ computation is dificult if : }\textrm{m}\mathrm{ is a product of two large strong primes!
RSA system can be broken by:
    1. Factoring m=p.q
    2. Computing \varphi(m) somehow without factoring m.
        However, factorization is computationally equivalent to computing Euler function }\varphi(m
        Proof:
        \varphi(m)=(p-1)(q-1)=m-p-q+1
        => s=(p+q)=m-\varphi(m)+1
        m=p.q
        porq=(s\pm\sqrt{}{\mp@subsup{s}{}{2}-4m})/2
```


Designing adequate and good RSA cryptosystem

1. How to choose large primes p, q for the modulus $m=p q$? Select primes randomly by using "miller test" or "Pocklington theorem" or other refined versions for generating primes.
2. Relationship between p and q

Difference $|p-q|$ should be neither too small nor too large.
$\operatorname{gcd}(p-1, q-1)$ should not be large
Both $p-1$ and $q-1$ should contain large prime factors (strong primes). The ideal case is: q, p should be strong primes - such that $(p-1) / 2$ and $(q-1) / 2$ are primes. Examples: $\mathbf{8 3}=2 \times 41+1, \quad 107=2 \times 53+1$
3. Selecting e and d ?

- Neither \boldsymbol{d} nor \boldsymbol{e} should be small.
d should not be smaller than n^{1}
(For $d<n^{1 / 4}$ a polynomial time algorithm may determine d). Many other considerations and refinements may appea according to the current state of the open research!

8

10

RSA Security and State of the Art in Factorization

No consistent and reliable answer (only claims according to the state of the art!):
In general:
Factorization Complexity is $\mathbf{O}(\sqrt{ } \mathrm{m})$
That is, if the modulus \boldsymbol{m} is an integer in the range of 2^{n} bits
To factor m, a computational complexity proportional to $2^{\mathrm{n} / 2}$ is required-
! There are still ongoing secret and open research on factorization
! Therefore, there are published results and unpublished results!

In the public literature

number theory, the general number field sieve (GNFS) is the most efficient classical
algorithm known for factoring integers larger than 10^{100}. Heuristically, its complexity for lactoring an integer n (consisting of $\left[\log _{2} n\right]+1$ bits) is of the form:

$$
\exp \left(\left(\sqrt[3]{\frac{64}{9}}+o(1)\right)(\ln n)^{\frac{1}{3}}(\ln \ln n)^{\frac{2}{3}}\right)
$$

Factorization is a business of mathematicians !
\qquad

13

14

15

