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Lecture Outlines

* Historical Overview !

* RSA Public-Key Encryption System
RSA Public-Key Signature System
* RSA Security considerations
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Conventional Public-Key Crypto-system

(using asymmetric keys)

Sender Receiver
Y=E(ZpX)
X E(ZpX) D(ZsY)
Message Channel Message
Zp Zs
Secret-Key Zs
Public-Key Zp
Public-Key Zp Public Directory
z.
L’Zp /
Z..
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Public-Key Secrecy System RSA 1978

(Rivest Shamir Adelmann) MIT, USA !!

K-close
/ =@ K-open

Trap-door One Way Function !

RSA key idea to implement such a lock: is based mainly on Euler theorem

and on the two unproved claims:
1. Euler function for any integer m is only computable if the factorization of m
is known.
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1
form=p;’ Py’ py'. prt = (P("")”“("'l;v )(1'Fz )

2. Factorization is considered as computationally hard and unsolved problem
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RSA-Lock (Hiding Function) Uses Exponentiation in the Ring Z,,
Where m = p.q, p and q are two large secret primes

Hy—e
\"_. 5 (mod m) ENCRYPTION

Secret key

D
) (mod m)  DECRYPTION

l
( ME)Pmodem =M E-Dneaem= M

| To get M, the following should hold: E.D =1 or D=E" in the exponent
i Thatis E and D should be invertible modulo g¢(m)! Or gcd (E, p(m)) =1

Security Considerations: m is a large composite (m=p q), p and qare two large secret
primes. To break the system o(m) is required to compute D = E*X modulo @(m). However, o(m)
can only be computed if p and g are known. Therefore, the system can only be broken if and
only if: m can be factored OR @(m) can be found somehow without factorization!
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Design Template for
RSA Public Key Secrecy System

Open directory

USERA: USER B

N, =p, . g, open modulus of A -]
Pa - 0. tow secret large primes |l
@(N2) = (pa-L ..

Ny =py . gy open modulus of B
" py .Gy tow secret large primes
0(Np) = (Pp-1)-(@ -1)

E, = open Encryption key of A .. E, = open Encryption key of B
D= E;* [mod o(N,)] - B Dy = Byt [mod o(Ny) ]
Condition: ged [E,, o(N,) =1 .| ‘Condition: ged [ Ey, , o(Np)] =1

i Number of possible keys= g[@(N,)] : i Number of possible keys = @[@(N)] |

Asends Message M _to B:
Y= M= mod N, — Y
(Encrypt)

%"= M5 ™ mod Ny=M

(Decrypt)
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Security of RSA Public Key System

Exponentiation y=a* in Z, a One-Way Function? |
Theoretically not (no proof that ¢p(m) is not computable if we do not knowp andq!!) |
Practically ¢(m) computation is dificult if : m is a product of two large strong primes!

RSA system can be broken by:
1.Factoringm=p.q
2. Computing ¢(m) somehow without factoring m.
However, factorization is computationally equivalentto computing Euler function ¢(m)

Proof:

Lom=(p-D@-D=m-p-q+1

= s=(p+q) = m-em)+1
| m=p.q

: porq = (s+Vs?-4m)/2

Page: 9

RSA Security and State of the Art in Factorization

No consistent and reliable answer (only claims according to the state of the art!):

In general:
Eactorization Complexity is O (Vm)
That is, if the modulus m is an integer in the range of 2" bits
To factor m, a computational complexity proportional to 2 "2is required

! There are still ongoing secret and open research on factorization!
! Therefore, there are published results and unpublished results!

In the public literature;
In number theory, the general number field sieve (GNFS) is the most efficient classical

algorithm known for factoring integers larger than 10'%, Heuristically, its complexity for
factoring an integer n (consisting of |log, n| + 1 bits) is of the form:

exp(<¢@; * "(1)) (lnn)’ (lnln n)§)

F is a business of ians |

10
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Designing adequate and good RSA cryptosystem

1. How to choose large primes p,q for the modulus m=pq?
Select primes randomly by using “miller test” or “Pocklington theorem” or other refined
versions for generating primes.

2. Relationship between p and q
- Difference |p-q| should be neither too small nor too large.
- ged(p-1, g-1) should not be large.

- Both p-1 and g-1 should contain large prime factors (strong primes). The ideal case is:

g, p should be strong primes - such that (p-1)/2 and (g-1)/2 are primes.
Examples: 83 =2x41 +1, 107=2x53 + 1

3. Selectingeand d ?
- Neither d nor e should be small.
- d should not be smaller than n¥/4,
(For d < n¥ a polynomial time algorithm may determine d).

Many other considerations and refinements may appear
according to the current state of the open research!
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Public-Key Signature Scheme

Signing Process

Verification Process
Message M
to be signed

Public Directory
E, Verification Key for A [*-._

Message

... Encrypting
by secret- Public-Key
Reiec Decryp‘qu key D, ™| encryption
) signature by-E, M M
B lessage
And check it 9 Signature S,
decryption Signature S, Encrypted M by D,
reveals M of user A
Signed Message
Accept
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https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Computational_complexity_theory

Design Template for the
RSA Public Key Signature System

Open directory

USERA:
User A
N, =P, . g, open modulus of A —77 N
Pa- two secret large primes | | Ea
0(No) da -1) =
User B
E, = open Encryption key of A Ny~
D, = Ex* [mod ¢(N,)] Epel—

ged [E, L o(Ny) 1= 1

! Asigns Document M for B:

=S MOd N, mm———ip S =M

Signed Message

v
(M,S) E D, E,

USERB:

N, =py - 0, Oopen modulus of B
p, . 0, twosecret large primes
9(Ny) = (py-1)-(a -1)

E, = open Encryption key of B
Dy = By [mod o(Np)]

ged [Ep, o(Ny) ] =1

a

mod N_=M" (verify M'=Mm)?
If M= M then the signature is true
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| Not i
! decrypt Sto disclose M! 1}
| Any other solution? 1!

Example: Construct RSA secrecy and signature system using the two prime pairs 11, 5 and
3,11. Encrypt the message M=2 sent to user B. Let B signs M and send his signature back to A.
Solution:

Open director
USERA: P y

N, =11 x5 open modulus of A User A
Pa- G, two secret large primes ~1~55

USERB:

.-N, = 3. 11 open modulus of B

©(N,) = (Pa-1).(a -1) |7 py - 0, two secret large primes
11-1)(¢ 40— ; o(Np) = (pyp-1)-(a -1) =20
- User B|.-
7= E,= open Encryption key of A 33 “ — 3 = E,=open Encryption key of B
gcd [E,, p(N) ] =1 k-0 ged [Ep, o(Ny) ] =1
ged(7,40)=1 s gcd(3,20)=1
D,= 71 [mod 40)]=23 .-~

D,= Byl [mod o(Ny)]=7

A sends Message =510 B: et

26 mod33=5=M |
(Decrypt)

iy =5 mod 33= 26 Y=26

(AEncrypts M)

S=14 S=5"mod33=14 |

(B signes M) '

that anybody can 1 M'=143 mod 33 =5=M
(Verify)

Page: 14

Live Example: sendinga secret documentM from B to A

Solution:

USER A: Open directory
N, =13 x 11 open modulus of A |User A

Pa- Q. two secret large primes 143

0(N) = (Pa-1)-(0a -1) 43

= (13-1)(11-1) = 120 N
User B

43= open Encryption key of A 7
ged [E, o(Ny) ] =1 17

ged(43,120)=1
D,= 43 mod 120=-53=-53+12

A decrypts Yoo, .
M=YPa = 4157 mod 143 =
(Decrypt) o
Aencrypts M back to B asz,;‘lhen Signs Yo,
Yap=ME® mod 77= 24" mod 77=40 _
S'Z (V)P mod 143 40, 57105
S = (40)" = 105
(Signing the encrypted M to B)

(Signature)

. Ged(3,20)=1

encrypted as Y\, expecting B to sign

it black securely. ThenA decrypts it and encrypts it to B as Y, and signs Yy, to B.

USERB

Ny = 7. 11 open modulus of B
Py - 0, two secret large primes
(Ny) = (pp-1)-(qp -1) =60

17 = open Encryption key of B
ged [Ep . o(Np) ] = 1

[mod o(N,) ] =-7=53

B éncrypts Message M=24 to A:
D) “u
Ypo =24% mod 143 = 41 @
(B Encrypts M)
B verifies:
105% mod 143 = 40= Yy, @

M= 40% mod 77 = 24
(8 checks)
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