
1

Page : 1

Introduction to Cryptology

09.05.2023, v41

Lecture-10

Public-Key Cryptography

RSA Rivest-Shamir-Adelmann Public-Key System

Page : 2

• Historical Overview !

• RSA Public-Key Encryption System

• RSA Public-Key Signature System

• RSA Security considerations

Lecture Outlines

Page : 3

Y = E (Z,X)

Channel Message

Sender Receiver

Message
X E (Z,X) D (Z,Y) X

The Target of Public Key Cryptography

Ciphering De-Ciphering

Secret Key = Z

Z

Secret Key Channel

Z

Public-Register

To replace that secret key-

agreement completely

Page : 4

User A User B

Basic Public Key Secrecy System (RSA system1978)

RSA: Rivest-Shamir-Adleman, MIT, USA

(Mechanical Lock simulation: user A sends a message to B)

Public register

Close

Kc

open ()Kc (mod m)

Kc

M

MKc

MKc.Ko = M

Ko= Kc-1

(MKc)Ko

Ko

Page : 5

Y = E (Zp,X)

Channel
X

Message

Sender Receiver

Message

E (Zp,X) D (Zs,Y)

Conventional Public-Key Crypto-system
(using asymmetric keys)

Secret-Key Zs

Public-Key Zp Public Directory

Z..

Zp

Z...

Public-Key Zp

ZsZp

X

Page : 6

Public-Key Secrecy System RSA 1978

K-close

K-open

(Rivest Shamir Adelmann) MIT, USA !!

Trap-door One Way Function !

RSA key idea to implement such a lock: is based mainly on Euler theorem

and on the two unproved claims:

1. Euler function for any integer m is only computable if the factorization of m

is known.

2. Factorization is considered as computationally hard and unsolved problem

for m = p1 p2 p3 pt

e1 e2 e3 et (m) = m (1 -) (1 -) …
P2

1

P1

1

1 2

3 4

5 6

2

Page : 7

M E (mod m) ENCRYPTION

Security Considerations: m is a large composite (m=p q), p and q are two large secret

primes. To break the system (m) is required to compute D = E-1 modulo (m). However, (m)

can only be computed if p and q are known. Therefore, the system can only be broken if and

only if: m can be factored OR (m) can be found somehow without factorization!

E

()

D

M E (mod m) DECRYPTION

D

To get M, the following should hold: E . D = 1 or D = E-1 in the exponent

That is E and D should be invertible modulo (m) ! Or gcd (E, (m)) =1

(M E)D mod (m) = M E. D mod (m) = M

RSA-Lock (Hiding Function) Uses Exponentiation in the Ring Zm

Where m = p.q , p and q are two large secret primes

Open key

Secret key

Page : 8

User B

Nb

Eb

User A

Na

Ea

Design Template for

RSA Public Key Secrecy System

USER A:

Na = pa . qa open modulus of A

pa . qa tow secret large primes

(Na) = (pa-1).(qa -1)

Ea = open Encryption key of A

Da = Ea
-1 [mod (Na)]

USER B:

Nb = pb . qb open modulus of B

pb . qb tow secret large primes

(Nb) = (pb-1).(qb -1)

Eb = open Encryption key of B

Db = Eb
-1 [mod (Nb)]

Open directory

A sends Message M to B:
DbY= M mod Nb

(Encrypt)

Eb

Condition: gcd [Eb , (Nb)] = 1Condition: gcd [Ea , (Na)] = 1

Y
Eb Db

= M mod Nb =M

(Decrypt)

Number of possible keys = [(Nb)]Number of possible keys = [(Na)]

Page : 9

Security of RSA Public Key System

RSA system can be broken by:

1. Factoring m = p . q

2. Computing (m) somehow without factoring m.

(m) = (p -1)(q -1) = m - p - q + 1

 s = (p + q) = m - (m) + 1

m = p . q

 p or q = (s   s2 - 4 m) / 2

However, factorization is computationally equivalent to computing Euler function (m)
Proof:

Is Exponentiation y = a x in Zm a One-Way Function ?

- Theoretically not (no proof that (m) is not computable if we do not know p and q !!)

- Practically (m) computation is dificult if : m is a product of two large strong primes!

Page : 10

10

No consistent and reliable answer (only claims according to the state of the art!):

In general:

Factorization Complexity is O (√m)

That is, if the modulus m is an integer in the range of 2n bits
To factor m, a computational complexity proportional to 2 n/2 is required.

! There are still ongoing secret and open research on factorization!

! Therefore, there are published results and unpublished results!

RSA Security and State of the Art in Factorization

In the public literature;

In number theory, the general number field sieve (GNFS) is the most efficient classical

algorithm known for factoring integers larger than 10100. Heuristically, its complexity for

factoring an integer n (consisting of ⌊log2 n⌋ + 1 bits) is of the form:

Factorization is a business of mathematicians !

Page : 11

1. How to choose large primes p,q for the modulus m=pq?
Select primes randomly by using “miller test” or “Pocklington theorem” or other refined
versions for generating primes.

2. Relationship between p and q
- Difference |p-q| should be neither too small nor too large.

- gcd(p-1, q-1) should not be large.

- Both p-1 and q-1 should contain large prime factors (strong primes). The ideal case is:
q, p should be strong primes - such that (p–1)/2 and (q-1)/2 are primes.
Examples: 83 = 2x41 + 1 , 107= 2x53 + 1

3. Selecting e and d ?
- Neither d nor e should be small.

- d should not be smaller than n1/4.
(For d < n1/4 a polynomial time algorithm may determine d).

Designing adequate and good RSA cryptosystem

Many other considerations and refinements may appear
according to the current state of the open research!

Page : 12

Message M

Signature Sa

of user A

Signed Message

Message M

to be signed

Public-Key Signature Scheme

Public Directory

Ea Verification Key for A

Decrypting

signature by Ea

And check if

decryption

reveals M

Accept

Reject

Verification Process

Message

Public-Key

encryption

Signature Sa

Encrypted M by Da

Encrypting

by secret-

key Da

Signing Process

7 8

9 10

11 12

https://en.wikipedia.org/wiki/Number_theory
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Computational_complexity_theory

3

Page : 13

Design Template for the

RSA Public Key Signature System

A signs Document M for B:

M
Da (M,S)

Signed Message
S

Da Ea
= M mod Na=M´ (Verify M´=M)?= S mod Na

User B

Nb

Eb

User A

Na

Ea

USER A:

Na = pa . qa open modulus of A

pa . qa two secret large primes

(Na) = (pa-1).(qa -1)

Ea = open Encryption key of A

Da = Ea
-1 [mod (Na)]

USER B:

Nb = pb . qb open modulus of B

pb . qb twosecret large primes

(Nb) = (pb-1).(qb -1)

Eb = open Encryption key of B

Db = Eb
-1 [mod (Nb)]

Open directory

gcd [Eb , (Nb)] = 1gcd [Ea , (Na)] = 1

Ea

If M´= M then the signature is true

Page : 14

User B

33

3

USER B:

Nb = 3. 11 open modulus of B

pb . qb two secret large primes

(Nb) = (pb-1).(qb -1) =20

3 = Eb=open Encryption key of B

Db = Eb
-1 [mod (Nb)] =7

gcd [Eb , (Nb)] = 1

gcd(3,20)=1

Solution:

User A

55

7

USER A:

Na = 11 x 5 open modulus of A

pa . qa two secret large primes

(Na) = (pa-1).(qa -1)

= (11-1)(5-1) = 40

7= Ea= open Encryption key of A

Da = 7-1 [mod 40)] =23

Open directory

gcd [Ea , (Na)] = 1

gcd(7,40)=1

A sends Message M=5 to B:

7
26 mod 33 = 5 = M

(Decrypt)

Y = 5 mod 33= 26
(A Encrypts M)

3 Y = 26

M’=143 mod 33 = 5 = M
(Verify)

S= 57 mod 33 = 14
(B signes M)

S = 14
Security Gap:
Notice that anybody can

decrypt S to disclose M!
Any other solution?

Example: Construct RSA secrecy and signature system using the two prime pairs 11, 5 and

3,11. Encrypt the message M=2 sent to user B. Let B signs M and send his signature back to A.

Page : 15

Live Example: sending a secret document M from B to A encrypted as Yba expecting B to sign

it back securely. Then A decrypts it and encrypts it to B as Yab and signs Yab to B.

User B

77

17

USER B:

Nb = 7. 11 open modulus of B

pb . qb two secret large primes

(Nb) = (pb-1).(qb -1) =60

17 = open Encryption key of B

Db = Eb
-1 [mod (Nb)] =-7=53

gcd [Eb , (Nb)] = 1

Gcd(3,20)=1

Solution:

User A

143

43

USER A:

Na = 13 x 11 open modulus of A

pa . qa two secret large primes

(Na) = (pa-1).(qa -1)

= (13-1)(11-1) = 120

43= open Encryption key of A

Da= 43-1 mod 120=-53=-53+120= 67

Open directory

gcd [Ea , (Na)] = 1

gcd(43,120)=1

B encrypts Message M=24 to A:

M=YDa = 4167 mod 143 = 24
(Decrypt)

Yba = 2443 mod 143 = 41
(B Encrypts M)

Yba = 41

Yab=MEb mod 77= 2417 mod 77=40

S = (Yab)
Da mod 143

S = (40)67 = 105
(Signing the encrypted M to B)

40, S=105

(Signature)

10543 mod 143 = 40= Yab

M= 4053 mod 77 = 24
(B checks)

A encrypts M back to B as Yab then signs Yab.:

12

3 4

B verifies:

A decrypts Yba:

13 14

15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

