Introduction to Cryptology

Lecture-08
Secret-Key Ciphers: Block Ciphers:
Design Principles and Contemporary Standards
03.05.2023, v54

Block Ciphers

Design Fundamentals and Standards

Outlines

- Basics of Block Ciphers
- Modern Block Ciphers since 1976
- Some Contemporary Standards

Designing block ciphers is a very challenging task.
A nice introductory short course.
EIDMA minicourse MC-CIC-7 Design and Analysis of Block Ciphers
by Prof. James L. Massey:
http://www.win.tue.nl/wsk/eidma/courses/minicourses/massey/MC-CIC-7.html

Block-Ciphers

A block cipher Is like a code-book: for each input clear text, there is a corresponding unique cipher text for a certain key and vice versa

Key Concepts for Block-Ciphers

Basic Design Requirements: (Shannon diffusion and confusion principles)
If key is not known, there no identifable relation between message, key and cryptogram
2. Any minor changes in message or key, result in tremendous changes in the cypptogram
3. No leakage of any part of the key or the message bits to the cryptogram
4. Exhaustive search attack should be infeasible
(example: key size $=100$ bits, then $\leq 2^{100}$ search cycles are necessary).
To compete with today's computation technology, more than 2^{80} search cycles are required. That is, key size for acceptable security level should be at least 80 bits

Sample bounds for implementing all possible block ciphers

> Complexity growth: Engineering approach:

Example: t=2, 2-bit to 2-bit mapping
Number of all possible mappings $=2^{224}=2^{8}$ mappings
Number or possible inverible mappings $=2^{2!}=24$
Memory implementation complexity: $2^{4.58}\left(2 \times 2^{2}\right)=2^{7.55}=\log _{2} 2!=4,58$
Example: $t=3$, 3 -bit to 3 -bit mapping
Number of all possible mappings $=2^{3 \times 8}=2^{24}$ mappings
Number of possible invertible mappings $=2^{3}!=40320$
\# bits required to select all possible invertible mappings $=\log _{2} 2^{33}=15,29$
Memory implementation complexity: $2^{15,29}\left(3 \times 2^{3}\right)=2^{2^{19,77}}$ bits
Example: $t=4,4$-bit to 4 -bit mapping
Memory implementation complexity:) $=2{ }^{5024} \mathbf{5}$ bits (see former page)
Example: $t=5,5$-bit to 5 -bit mapping
Number of all possible mappings $=2^{5 \times 32}=2^{160}$ mappings
Number of possible invertible mappings $=2^{5!}=2,6310^{103}=\log _{2} 25!=117$, Memory implementation complexity: $2^{117.66}\left(5 \times 2^{5}\right)=\underline{2^{124,98}}$ bits \quad (not implementable!!)

General Perfectfull Block-Crypto-Mappings (BC)

Example: number of existing ciphers of 64 to-64 bits with 64 bits key size $\approx 2^{2^{70}}$ ciphers a small fraction of them is known !!!
The lecture would discuss few of the most known standard ciphers

Widespread Standard Block Ciphers

- DES: Data Encryption Standard, IBM (NIST) 1976 (USA)
- IDEA (J. Massey and Lai) 1990 (Europe)
- FEAL NTT 1989 (Japan)
- KASUMI 1999 UMTS/3GPP (Mitsubishi Japan) to replace the broken GSM A5 (Secret Stream Cipher)!

AES Advanced Encryption Standard (NIST): New international standard Rijndael Belgium (Oct. 2000)

Many other ciphers were proposed

The First Standard Block-Cipher
The DES (Data Encryption Standard) Cipher (1976)
Amapping function R is repeated 16 times, each time with a different key

DES Feistel Round Structure R (Lucifer Late 1960)
(Horst Feistel, IBM) (1915 in Berlin; $\dagger 1990$ USA)
(Migration 1934/1944 US citizen) Bsc MIT, Msc Harvard

Involution

An involution: is a function that is self-inverting

Simplified Example:

Given the following two mapping functions, \mathbf{F} and transposition are to be used as a round operation in a block cipher.

1. Prove that the given function is an involution
2. Compute the cipher text $Y=R 1$, $L 1$ for an input $R=9, L=11$ using two rounds with the keys $K_{1}=2, K_{2}=3$. Take $n=4$ bits.
3. Decipher the cryptogram Y

Solution:

Increasing Security Strength by:

Cascading t-Ciphers
Or repeating the same cipher t-times

If the same Cipher with key length of m bits is cascaded t times.
The resulting key strength is not $=\mathrm{t} \cdot \mathrm{m}$ bits, But $=(\mathrm{t}-1) \mathrm{m}$ bits (due to met-in-the middle attack technique!)

Triple-DES is a De Facto Standard in many Systems !!

$\frac{3 \text { times cascaded DES results with a key strength of only } 2 \times \text { DES } \text { key }=2 \times 56=112 \text { bits }}{- \text { IF K1 }=\text { K2, the result is a single DES. }}$ -IF K1=K2, the result is a single DES.
DES is still not broken !!
There is no proof that DES can not be broken !!

KASUMI
 $3^{\text {rd }}$ Generation Mobile Cipher is

KASUMI Cipher to replace A5/1,2,..
UMTS/3GPP Standard (March 2000)
Original Cipher: Mitsubishi's " MISTY" 1997

AES

Advanced Encryption Standard

International Standard competition managed by NIST: US National Institute of Science and Technology 1998-2001
Proposed 2001/2002 for 36 Mobile Authentication Functions

History

A Standard Managed by the US National Institute of Science and Technology NIST

- DES (1976) is an aging standard
- Triple-DES: considered by NIST as a defacto-standard
- AES: Advanced Encryption Standard: finalized in 2001
- Goal: define the Federal Information Processing Standard (FIPS)
- AES candidate algorithms have to be:
- Symmetric-key ciphers supporting 128, 192, and 256 bit keys
- Royalty-Free and unclassified (i.e. public domain)
- Available for worldwide export

Basic Secret Key Cipher Requirement

Fundamental requirement: Given the function F it's infeasible to recover data X from ciphertext y without knowing the key K

AES Round-3 Finalist Algorithms

(finalized in 2001)

- MARS : IBM (USA)
- RC6 : R. Rivest (MIT), creator of the widely used RC4 (USA)
- Twofish : Counterpane Internet Security, Inc. (USA)
- Serpent: Ross Anderson, Eli Biham and Lars Knudsen (USA)
- Rijindael: Designed by J. Daemen and V. Rijmen (Belgium)

Joan Daemen (of Proton World International)
Vincent Rijmen (of Katholieke Universiteit Leuven).
IBM Candidate for AES
_ Block-Cipher

- Optimized for 32 bit processors
- All operations are 32 bits based.

MARS (IBM)
 (AES Candidate: a round 3 finalist)

Page:

MARS

MARS Ciphering process

- Forward / Backwards Mixing

Forward / Backwards Transformation

Forward Mixing

Cryptographic Core- Forward Transformation

Cryptographic Core- Backward Transformation

MAGENTA Block-Cipher

(Proposed for AES Competition by German Telecom)

MAGENTA Involution

The AES Competion Winner Algorithm

(Decision Oct. 2000)

The Riindael Block Cipher

- By Joan Daemen (of Proton World International) and Vincent Rijmen (of Katholieke Universiteit Leuven),
- (pronounced "Rhine-doll")
- Allows only 128,192 , and 256 -bit key sizes (unlike the other candidates)
- Variable block length of 128, 192, or 256 bits. All nine combinations of key/block length possible.
- A block is the smallest data size the algorithm will encrypt - speed improvement over DES

Rijndael: Basic concept

10 Encryption Rounds $\mathrm{R}_{1} \ldots \mathrm{R}_{10}$

Rijndael AES: Basic Encryption Round Functions

Rijndael: Data Format for 128-Bit Blocks

$\square \quad 128$ bits key $\quad \square$ | K15 | K14 | |
| :--- | :--- | :--- | :--- | :--- | :--- |

\qquad

Rijndael: Encryption Round transformation

Rijndael: ByteSub

Each byte at the input of a round undergoes a non-linear byte substitution according

Rijndael: ByteSub and its inverse ByteSub-1

.

Rijndael: ByteSub and its inverse ByteSub-1

Inverse Rijndael Cipher

- Except for the non-linear ByteSub step, each part of Rijndael has a straightforward inverse and the operations simply need to be undone in the reverse order.
- However, Rijndael was specially written so that the same code that encrypts a block can also decrypt the same block simply by changing certain tables and polynomials for each layer. The rest of the operation remains identical.

Rijndael: Decryption Round transformation

Hardware Implementations

- Rijndael performs very well in software
- Multiple S-Box engines, round-key EXORs, and byte shifts can all be implemented in hardware when speed is required
- Small amount of hardware can vastly speed up 8 -bit implementations

Other
Block Ciphers Operation Modes
as
Running Key Generators

CBC Mode

Cipher Block Chaining Mode

Self-Synchronizing OFB Mode

Single-Bit
(OFB: Output Feedback)

Self-Synchronizing OFB Mode

n-Bits

