Introduction to Cryptology

Lecture-07
Secret-Key Ciphers
Stream Ciphers: Design Principles
26.04.2023, v50

Stream Ciphers

Design Fundamentals

Outlines

- Historical Overview
- Basic Definitions
- Linear Feedback Shift Register Sequences
- Stream Cipher Design Principles
- Contemporary Standards

Stream Cipher Hagelin M-209 (2 ${ }^{\text {nd }}$ World War)
designed by the Swedish cryptographer Boris Hagelin in the 1930s *.

Most Modern Stream Ciphers are basically Key Stream Generators KSGs

Most Modern Stream Ciphers deploy the so called:
"Linear Feedback Shift Registers" LFSR
(linear state machines)
as building blocks for constructing Key Stream Generators (KSGs)

The design rules for LFSRs are therefore presented in a compact form in the next slides
A good reference on this subject is:
Golomb, S.W.: Shift Register Sequences. Holden-Day, Inc., San Francisco (1967); Revised 2nd edn., Aegean Park Press, Laguna Hills, CA (1982)

Linear Feedback Shift Registers LFSR

Linear Sequence Generator (canonical form 1)
D-transform format (also known as Fibonacci LFSRs)

Register has length L
Feedback is defined by the Connection Polynomial in the delay element D
$C(D)=1+C_{1} D^{1}+C_{2} D^{2}+\ldots . .+C_{1} D^{L}$
We restrict our treatment for binary case that is over GF(2)

Linear Feedback Shift Registers LFSR

Linear Sequence Generator (canonical form 2)
equivalent to form 1 (also known as Galois LFSRs)
Division engine in the ring of polynomials modulo $p(x) Z_{p(x)}$

Division in the ring of polynomials modulo $P(x)=1+p_{1} x^{1}+p_{2} x^{2}+\ldots . .+\mathbf{p}_{m-1} x^{m-1}+p_{m} x^{m}$ Polynomial degree $=\mathbf{m}$

```
Feedback Shift Register similarity to division in rational numbers
A rational number is represented by the division \(\mathrm{a} / \mathrm{b}\)
, where \(a\) and \(b\) are coprime integers such that \(\operatorname{gcd}(a, b)=1\)
Example: The division \(1 / 7=0.142857142857142857\).
equience with a Cycle-length \(=6\)
LFSR output sequence is equivalent to dividing two polynomials: \(\mathrm{S}(\mathrm{D})=\frac{\mathrm{P}(\mathrm{D})}{\mathrm{C}(\mathrm{D})}\)
    Example: \(S(D)=\frac{P(D)}{C(D)}=\frac{1+D}{1+D+D^{2}} \quad\) (see Ref. Golomb. For D-transtorm division)
        \(\mathrm{S}(\mathrm{D})=(1+\mathrm{D}) \quad+\left(1+\mathrm{D}+\mathrm{D}^{2}\right)=1+\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{5}+\mathrm{D}^{6}+\mathrm{D}^{8} \ldots\)
            \(\frac{1+\mathrm{D}+\mathrm{D}^{2}}{\mathrm{D}}{ }^{2}\).
                    \(\frac{\mathrm{D}^{2}}{\mathrm{D}^{2}+\mathrm{D}^{3}+\mathrm{D}^{4}} \mathrm{D}^{\mathrm{D}^{4}+\mathrm{D}^{2}}+\cdots \cdots \mathrm{MB}^{\text {a }}\)
                    MSB .... LSB
```



```
\(\mathrm{D}^{3}\)
``` \(\qquad\)
``` 101101101
\(\frac{\mathrm{D}^{6}+\mathrm{D}^{6}+\mathrm{D}^{6}}{}\)
\({ }^{6}+\mathrm{D}^{7}+\mathrm{D}^{8} \quad\) Cycle length \(=3\)


Basic Linear Feedback Shift Register Structure LFSR Example 1 (using irreducible polynomial with period 5)

\(C(D)=D^{3}+D+1=1011\)
is irreducible and primitive with period \(\mathrm{e}=\mathrm{N}=\mathbf{2}^{\mathbf{3}-1}=7\).


\section*{LFSR as PN-Sequence Generator}
( maximum-Length Sequence)
(Pseudo-Noise) PN-Sequence Characteristics
Generalization: If the connection or division Polynomial of degree \(m\) is selected to be (the highest possible that is an irreducible polynomial, where the order of x is \(=2^{m-1}\) (PN) Sequence.

\section*{In general, PN Sequences have the following properties:}
1. The sequence length is \(2^{\mathrm{m}}-1\)
2. The number of 1 ' s is \(2^{\mathrm{m}-1}\)
3. The number of 0 's is \(2^{m-1}-1\)
4. A shifted window of length \(m\) on the sequence results with all \(2^{m}-1\) non-zero \(m\)-bit binary patters (Window property)
5.lf the reciprocal polynomial (mirro
5.If the reciprocal polynomial (mirrored pattern) is used, then it results with the same
sequence length with mirrored sequence
6.The number of primitive polynomials over GF(2) is: \(\varphi\left(2^{m}-1\right) / m\)

Example: LFSR, as PN Sequence generator of length \(2^{4}=1=15\)
If \(C(D)\) is a primitive polynomial \(C(D)=10011=D^{4}+D+1\),
Inital State \(\mathrm{S}=100011110101100\)


\section*{Applications of PN-Sequence Generator}

\section*{Two examples}
1. Radar Distance Measurement:

PN Sequence shift is proportional to the delay time of a reflected wave.
2. \(3^{\text {rd }}\) Generation Mobile multiple access CDMA system uses PN Sequences Gold Sequences \(\mathbf{C}_{\mathbf{i}}\) s:
Are orthogonal Sequences generated by combining PN-Sequences with
the cross-correlation property \(c_{(t)} X c_{(\text {( })} \approx 0\) for \(i \neq j\) to differentiate between users sending on the same broadband channel. Every user is assigned a different sequence. As in the following example:


LFSR Linear Feedback Shift Register PN-sequence as a Running Key Generator?
Primitive polynomial \(C(D)=D^{4}+D^{3}+1\) of degree 4
\(\Rightarrow\) period \(\mathrm{N}=\mathbf{2}^{4}-1=15\)
\[
S(D)=\frac{P(D)}{C(D)}=\frac{1+D}{1+D^{3}+D^{4}}
\]


A bad Cipher! Why?
\(\qquad\)


Non-Linear Feedback Shift Register Structure NLFSR are good key-sequence generators: Singular and Non-singular cases

Non-linear Singular Shift Register Sequences



Untortunatelv: No general constuctive rules for the functiont are known for



\section*{Self Synchronizing Stream Cipher}


The Most Widespread Stream Cipher
GSM Mobile Phone Cipher: A5/1,2 .. Unpublished Ciphers !

Used in more than \(\mathbf{7 0 0 0}\) million devices worldwide!


Sequences from Non-Linear Feedback Shift Register NLFSR (optional)


\section*{Bounds}

Largest possible sequence length from a state machine of \(n\)-bits:
when a machine starts by any initial state out of all \(2^{n}\) possible states.
Upper bounds:
The autonomous state machine produces a sequence of length of at most: \(2^{n}\) bits
There exist : \(2^{2^{n}}\) possible sequences having the length \(\mathbf{2}^{n}\)
Which sequences have optimized equal distribution of 1's and 0 's ?

\section*{Facts around the De Bruijn Sequences}
- The binary De Bruijn sequences: Are binary sequences having the period of \(P=2^{n}\) such that every n -bit tuple appears just one time in the sequence.
- the number of cyclically equivalent \(D\) e Bruijn sequences \(B_{n}\) :
\[
B_{n}=2^{2^{n-1}-n}
\]
- the weight of the sequence is \(2^{n-1}\) that is \(50 \%\) zeros and \(50 \%\) ones
- Large linear complexities \(C\) : \(2^{n-1}+n \leq C \leq 2^{n}-1\)

Example: for \(n=3\)
Sequence period: \(2^{3}=8\) bits Sequence weight: \(2^{3-1}=4\)
Num of sequences: \(B_{n}=2^{2^{n-1}-n}=2^{2^{3-1}-3}=2^{4.3}=\mathbf{2}\)

Significant crypto-properties:
- Good statistical distribution of 1 s and 0 s as key sequences
- Large number of sequences compared with the linear PN sequences

Effectively attacked by A. Shamir 1999/2000
The attack can find
the key in less than a
second on a single
PC with 128 MB RAM
and two 73 GB hard
disks, by analysing the output of the A5/1 algorithm in the first algonthm in the first
two minutes of the
conversation conversation
It is unprofessional to
assume that a cipher somebody knows it!
somebody knows it!!



\section*{De Bruijn Sequences}

What is a De Bruijn Sequence?
Example for 8 -bit De Bruijn Sequence of length \(2^{3}=8\) :

\section*{\(0-0-0-1 \cdot 0-1 \cdot 1-1\)}

Sequential Window Values left to right: 0 0/1,2/5/3/7/6/4 \(0,1,2 \ldots\)

\section*{GSM: Mobile Phone A5/1 Stream-Cipher} Secret Cipher!
Published by Berkely Students. (A standard Cipher cannot be kept secret!

\section*{General Non-singular Fibunacci NLFSR}

Proposed NLFSR Logic Structures: for De Bruijn Sequences Generators
The NLFSR is non-sigula if and only if: \(f\left(x_{0,}, x_{n}, \ldots, x_{n-1}\right)=x_{n-1}^{\prime}=x_{0}+\boldsymbol{g}\left(x_{1}, \ldots, x_{n-1}\right)\)

non-singular \(=\) states in distinct loops
i.e.: If every generated output sequence is periodic for all probable initial states.

\section*{Two types of De Bruijn Sequences}
1. De Bruijn sequences of full length \(=2^{n}\)
- Are sequences of period \(\mathrm{P}=2^{\mathrm{n}}\).
- Where ( \(n\) ) is the length of the FSR
- Total number of sequences: \(B_{n}=2^{2^{n-1}-n}\)
2. Modified De Bruijn sequences of length \(2^{\text {n }}-1\)
- Are sequences of period \(\mathrm{P}=2^{\mathrm{n}}-1\).
- Total number of sequences: \(B_{n}=2^{2^{n-1}-n+1}\)

Properties:
- good randomness properties, large classes and large linear complexities \(C\) : \(2^{n-1}+n \leq C \leq 2^{n}-1\)

\section*{Cryptographic Significance of De Bruijn Sequences}

For \(\mathrm{n}=2\) :
Total number of sequences of Period \(\left(P=2^{n}-1=3\right)=2^{2^{n-1}-n+1}=2^{2^{2-1}-2+1}=2\)
Total number of sequences of Period \(\left(P=2^{n}=4\right)=2^{2^{n-1}-n}=2^{2^{2-1}-2}=1\)
For \(\mathrm{n}=3\) :
Total number of sequences of Period \(\left(P=2^{n}-\mathbf{1}=7\right)=2^{2^{n-1}-n+1}=2^{2^{3-1}-3+1}=\mathbf{4}\) Total number of sequences of Period \(\left(P=2^{n}=8\right)=2^{2^{n-1}-n}=2^{2^{3-1}-3}=2\)
For \(\mathrm{n}=4\) :
Total number of sequences of Period \(\left(P=2^{n}-\mathbf{1}=15\right)=2^{2^{n-1}-n+1}=2^{2^{4-1}-4+1}=32\)

\section*{Annex}

Total number of sequences of Period \(\left(P=2^{n}=16\right)=2^{2^{n-1}-n}=2^{2^{4-1}-4}=16\)
For \(\mathrm{n}=5\) :
For \(\mathrm{n}=5\) :
Total \(n\) umber of sequences of Period \(\left(\boldsymbol{P}=2^{n}-\mathbf{1}=\mathbf{3 1}\right)==^{2^{n-1}-n+1}=2^{2^{5-1}-5+1}=\mathbf{4 0 9 6}\)
Total number of sequences of Period \(\left(\boldsymbol{P}=2^{n}=\mathbf{3 2}\right)=2^{2^{n-1}-n}=2^{2^{5-1}-5}=\mathbf{2 0 4 8}\)
List of all Pimitive Polynomial up to degre 11

Sequences for larger n : implementation with adequate complexity is still unknown!!
- For \(\mathrm{n}=6\) there are \(\boldsymbol{B}_{n}=\mathbf{2}^{\mathbf{2 6}}\) Sequences of length \(2^{n}=2^{6}=64\) Bits
- For \(\mathrm{n}=6\) there are \(\boldsymbol{B}_{n}=\mathbf{2}^{26}\)
- For \(\mathrm{n}=7\) there are \(\boldsymbol{B}_{n}=\mathbf{2}^{57}\)
- For \(\mathrm{n}=8\) there are \(\boldsymbol{B}_{n}=\mathbf{2 n}^{\mathbf{1 2 1}}\)
- For \(\mathrm{n}=12\) there are \(\boldsymbol{B}_{n}=\mathbf{2}^{\mathbf{2 0 4 1}}\)

Sequences of length \(2^{n}=2^{7}=128\) Bits


List of all irreducible Polynomials up to degree 11 over GF(2) \(2 / 2\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 111000011101 & 2047 & 111007111011 & 2047 & 111011111001 & 2047 & 111110010001 & 20 \\
\hline 111000100001 & 2047 & 11100111100 & 2047 & 111100001011 & 2047 & 111110010111 & 2047 \\
\hline 111000100111 & 2047 & 111010000001 & 2047 & 111100011001 & 2047 & 111110011011 & 2047 \\
\hline [11000101011 & 2047 & 111010010011 & 2047 & 111100110001 & 2047 & 111110100111 & 2047 \\
\hline 111000110011 & 2047 & 11101001111 & 2047 & 111100110111 & 2047 & 111110101101 & 2047 \\
\hline 111000111001 & 2047 & 111010100011 & 2047 & 111101011101 & 2047 & 111110110101 & 2047 \\
\hline 111001000111 & 2047 & 111010111011 & 2047 & 111101101011 & 2047 & 111111001101 & 2047 \\
\hline 111001001011 & 2047 & 111011001001 & 89 & 1111010101 & 2047 & 111111010011 & 2047 \\
\hline 11700010101 & 2047 & 111011001111 & 2047 & 111101110101 & 2047 & 111111100101 & 2047 \\
\hline 111001011111 & 2047 & 111011011101 & 2047 & 111101111001 & 89 & 111111101001 & 2047 \\
\hline 111001110001 & 2047 & 11101110011 & 2047 & 111110000011 & 2047 & 11111111011 & 89 \\
\hline
\end{tabular}
```

