
1

Page : 1
bfolieq.drw

Introduction to Cryptology

28.03.2023, v52

Lecture-05
Mathematical Background: Extension Finite Fields

Page : 2
bfolieq.drw

• Euclidean Algorithm, Remainder

Greatest Common Divisor (gcd)

• Group Theory, Rings, Finite Fields

Element’s Order, Euler Theorem

• Prime Numbers

Prime Number Generation

• Extension Fields

Outlines

Mathematical Background
In Discrete Mathematics, Number Theory

part 1

part 2

part 3

part 4

Page : 3
bfolieq.drw

Representing information in security systems as “Vectors”
(More flexible and efficient algebraic system for modern cryptography!)

Data representation in Integer algebra:

(1010)  10 Element in GF(13)

(1010101)  85 Element in GF(89)
Large data blocks require large field modulus and hence more complex arithmetic

Alternatively data may be represented as vectors having entries from GF(13):

(3 2 11 8 10) Vector having components from GF(13) with 5 entries, 4 bits each.

The result is a vector of 20 bits as follows:

Or fully usable binary vectors when using GF(31):

(10101 00011 01110 … 10110)1 x 1000 , 5000 bits, with algebra over GF(31)!

Or simply: (1 0 1 1 0 1 0 1.. 1 0)1 x 256 256 bits block/tuple with algebra over GF(2)

Question: Can we construct a “closed operational algebraic system”

when describing data as such large vectors from a GF ?

The answer is yes, by using what is called Extended Finite Fields (GF)

This section treats such data : (1 0 1.. 1 0)1 x n as n-bit tuples/vectors over GF(2)

…
(0011 0010 1011 1000 1010) (not all 4-bit combinations are usable!)

Page : 4
bfolieq.drw

Vectors Represented as Polynomials over GF(2)

m

mxaxaxaa ...2

210 A (x) = A(x) is a Polynomial over GF(2), ai  GF(2)

Corresponding vector (1 1 0 1 0 0 1)

Position 6 5 4 3 2 1 0

MSB LSB

Example : Position 6 5 4 3 2 1 0

Vector (1 1 0 0 0 1 1)

Corresp. Polynomial A(x) = x6 + x5 + x + 1

And in reversed direction (vector to polynomial)

Example : Polynomial A(x) = x6 + x5 + x3 +1 over GF(2)

Can represent a vector as polynomial A(x) with elements from GF(2)

Page : 5
bfolieq.drw

Basic Vectors/Polynomial Arithmetic over GF(2)

Multiplication:

A(x) B(x) = (1 + x) (1 + x + x3)
= 1(1 + x + x3) + x(1 + x + x3)
= 1 + x + x3+ x + x2+ x4

= 1 + x2+ x3+ x4

In binary form
A(x)  0011
B(x)  1011

A(x) + B(x)  1000

In binary form

B(x) 1011
A(x) 0011

1011
1011

0000
0000

A(x) * B(x) 0011101







Addition:

A(x) = 1 + x
B(x) = 1 + x + x3

A(x) + B(x) = x3

(as 1+1 =2 =0 in GF(2))

A(x) + B(x) = 2 + 2x + x3

From now on, we will use the term polynomials to designate vectors and vice versa

Page : 6
bfolieq.drw

For creating Finite Fields GF,

non-factoriseable numbers called Prime Numbers

were used as modulus (remainders modulo p)

Similarly:

For creating vector/polynomial-fields called “Extension Fields”,

non-factoriseable polynomials called “Irreducible Polynomials”

are used as modulus (remainders modulo p(x))

How to create Algebra between vectors/polynomials?

What are “Irreducible Polynomials”

2

Page : 7
bfolieq.drw

Selected fundamental properties of irreducible polynomials

•The period e of g(x) is the smallest e such that xe = 1 [mod g(x)]

• The period e is actually the multiplicative order of x modulo g(x). e divides 2m -1

• If e = 2m -1, then the irreducible polynomial is then called a primitive plynomial

• The reciprocal of a polynomial g(x) is defined as g*(x) = xm g(1/x) (mirror polynomial)

• The reciprocal g*(x) is also irreducible having the same period as that of g(x)

• If g*(x) = g(x), then g(x) is said to be a self-reciprocal irreducible polynomial (symmetric)

(highest possible period is a divisor of 2m/2 + 1)

- Generating “Irreducible Polynomials” is as difficult as generating prime numbers!

- Polynomial factorization is also an unsolved problem!?

To attain closed field algebra “Irreducible Polynomials” are required!

(Again: such polynomials play a similar role of “prime numbers” as field modulus)

A polynomial g(x) of degree m over GF(2) (2 is a prime!)

(ai GF(2))

Is said to be an irreducible polynomial over GF(2) if factorizing g(x) is not possible

m

mxaxaxaa ...2

210 g(x) =

Non-trivial Self-reciprocal Polynomial can not be primitive!

G(x) =101

G*(x)=G(x)=101

G(x) =1011

G*(x) =1101

Page : 8
bfolieq.drw

List of all irreducible Polynomials over GF(2) up to degree 11 (generated by exhaustive search)

(all 1 Polynomial)

self-reciprocal!

Primitive ployn.

Primitive ployn.

Primitive ployn.

Only self-reciprocal

and primitive ployn.

As 22-1=22/2 +1 = 3!

self-reciprocal

Non-primitive ployn.

Periode is a divisor 0f

210/2 +1 = 33

Page : 9
bfolieq.drw

The ring of polynomials Zg(x) modulo any irreducible polynomial g(x) of degree m over

GF(2) is an Extension Field with 2m elements of m-bit tuples. This is assigned as GF(2m).

! The Use of Irreducible Polynomials !

The ring of polynomials modulo any irreducible g(x)

is designated as Zg(x) and builds an Extension Field

How to construct such m-bit closed vectors algebra?

- Select g(x) as any irreducible polynomial of degree m and use it as a field modulus. The

result is an “extension field” algebraic system on all m-bit vectors
(using prime number modulus in integer algebra. Corresponds to using irreducible polynomial modulus in polynomial algebra)

Finding irreducible polynomials :
There are theories and techniques (similar to those of prime integers but more complex) for testing

and generating irreducible polynomial. (this is out of the scope of this lecture).

The table shown before includes a full list of all irreducible polynomials over GF(2) up to degree 11.

Page : 10
bfolieq.drw

Smallest Extension Field GF(22) :

A full operational algebra on 2-bits vectors/polynomials

g(x) = x2 + x + 1= 111 is irreducible of degree m=2 over GF(2).

g(x) is the modulus, therefore x2 + x + 1 = 0 => x2 = x + 1

GF(22) elements are :

Addition and multiplication tables in GF(22) are:

 







 

0 1 1

0 0 1 1

1 1 0 1

1 0 1

1 1 1 0

x x

x x

x x

x x x

x x x

0 1 1

0 0 0 0 0

1 0 1 1

0 1 1

1 0 1 1

x x

x x

x x x

x x x







 



00 <=> 0

01 <=> 1

10 <=> x

11 <=> 1+x

 00 01

00 01 11

01

10 11

10

11

11

11

11

10 10

01

00

00

01

00 01

10

0010

00 01

00 00 00

00

10 11

00

00

10

10

11

10 00

01

00

01

01

11 01

11

1011



(1+x) (1+x) mod (x2 + x + 1)

= x2 + 2x + 1

= x2 + 1 = (x+1)+1= x 2=0 over GF(2).

Remainder of division

or divide:

(x2 +2x+1) / (x2 + x + 1) = 1 + x / (x2 + x + 1)

Page : 11
bfolieq.drw

Facts:

- Any non-zero element/vector in GF(2m) builds a cyclic group.

- The multiplicative order of any element in GF(2m) is a divisor of 2m-1 .

[The possible multiplicative orders are only the divisors of (2m-1)]

Multiplicative order and primitive elements in GF (2m)

A Primitive Element:

- Is the element having the highest possible multiplicative order, that is = 2m-1.

- The exponents of such element generate the whole non-zero group elements

Number of all existing primitive elements: is  (2m-1)

Number of elements having order k: is  (k)

Page : 12
bfolieq.drw

The algebra on m-bit vectors/polynomials over GF(2) using an irreducible polynomial g(x)

of degree m as modulus, where g(x) = 1 + g1x
1 + g2 x2 ...+ gm xm . [all computations are modulo g(x)]

result with what is called GF(2m) having 2m elements (vectors/polynomials).

Summary and some extension field properties

- Any non-zero element (multiplicative group element)  in GF(2m) has a multiplicative inverse.

- The 2m–1 non-zero elements build a cyclic group under multiplication.

Group’s order is 2m-1. (inverse computation: by using the extended gcd algorithm for polynomials)

- The multiplicative order of any element is a divisor of 2m–1 , the number of elements with order t is (t)

- For any non-zero element   GF(2m) the following holds  = 1

(reason: the order of any element divides the group‘s order 2m-1)

- If ,   GF(2m) then : (+)2 = 2 + 2 or [f(x)]2 = f(x2)

(Notice: squaring is a linear operation in GF(2m)

2m -1

In GF(2m) the following relationships hold:

3

Page : 13
bfolieq.drw

x = x 0010 mod (x4+ x +1)

x2= x2 0100 mod (x4+ x +1)

x3= x3 1000 mod (x4+ x +1)

x4= x4 = x + 1 0011 mod (x4+ x +1)

x5= x x4 = x2 +x 0110 mod (x4+ x +1)

x6= x (x2 +x)= x3 +x2 1100 mod (x4+ x +1)

x7= x (x3 +x2) = (x4 +x3) = x +1+x3 1011 mod (x4+ x +1)

x8= x4 + x2 +x = 1+x + x2 +x = 1+x2 0101 mod (x4+ x +1)

x9 = x3 + x 1010 mod (x4+ x +1)

x10 = x4 + x2 = x+1 + x2 0111 mod (x4+ x +1)

x11 = x3 + x2 +x 1110 mod (x4+ x +1)

x12= x4 + x3 + x2 = x +1+ x3 + x2 1111 mod (x4+ x +1)

x13= x4 + x3 + x2 +x = x3 + x2 + 1 1101 mod (x4+ x +1)

x14= x4 + x3 + x= x+1+x3 + x = x3 +1 1001 mod (x4+ x +1)

x15= x4 + x = x + 1 + x = 1 0001 mod (x4+ x +1)

Example: Element’s order over the extension field GF(24)
Compute the exponents of the element x over GF(24) which is generated by the irreducible polynomial

P(x)= (x4+ x +1)

Important notice:

In GF (24): the order of

any element Is a divisor

of 24-1=15

Divisors of 15 are
1, 3,5,15 !

The order can only be

1 or 3 or 5 or 15 !

The order of the

element x is 15=24-1
=> x is a primitive element

Solution
If P(x)= x4+ x +1 is the modulus then it is equal to zero, that is x4 + x +1 = 0, thus x4 = x +1.

the exponents of x in GF(24) are:
msb lsb

→

Ord (i) = k / gcd (i,k)

Ord (x1,2,4,7,8,11,13,14) = 15

→

→

→

→

→

→

→

Page : 14
bfolieq.drw

1- Less-complex processing for equivalent security levels

Why Algebra over GF (2m)
for modern Cryptographic Systems

2- Faster running time

3- Lower hardware complexity and costs. Usable in modern smart card

technology at commercially acceptable costs.

The basic hardware processing units for the primitive arithmetic

operations; addition, multiplication and division over GF(2n) are given in

a compact template-form in the following sections

Contemporary “Modern Crypto-Systems” are deploying this algebra in

practical applications more and more intensively

Page : 15
bfolieq.drw

Hardware Architectures for Arithmetic in GF (2n)

Addition

Parallel Sequential

=

Page : 16
bfolieq.drw

I(x)  … i(2), i(1), i(0)

MSB

hmhm-1h
1

S1 SS0 SM-1 Sm B (x)

h0 h2 h3

B (x) = H(x) ∙ I(x)

Hardware Architectures for Arithmetic in GF (2m)

Multiplication

H(x)

Page : 17
bfolieq.drw

g0 g1 g2

g0

gm-1

Hardware Architectures for Arithmetic in GF (2m)

Division

I(x) R(x)

G(x) G(x)
= Q(x) +

NOTE: R(x) is the content

of the register after

entering all I(x) bits

Page : 18
bfolieq.drw

Hardware Architectures for Arithmetic in GF (2m)

Combined Division and Multiplication

)(

)(
)()(

)(

)(

xG

xR
xZxI

xG

xH


Multiplier: H(x) = h0 + h1x
1 + h2x

2 … + hmxm

Divisor: G(x) = g0 + g1x
1 + g2x

2 … + gmxm

Input: I(x) = i0 + i1x
1 + i2x

2 … + ikx
k

Input bits I(x):

i0 i1 i2 …. ik-1 ik

…

Remainder: R(x) = r0 + r1x
1 + r2x

2 … + rm-1x
m-1

R(x)=H(x) • I(x) mod G(x) = s0 + s1x
1 + s2x

2 … + sm-1x
m-1 after clock k+1

Output sequence

+
g0

h0

+s0

g1

h1

+Sm-2

gm-1

hm-1

+Sm-1

hm

…

…

…

Z(x)

4

Page : 19
bfolieq.drw

Arithmetic in Zp(x) , size (216)

Example: (CRC: Cyclic Redundancy Code/Check)

Simultaneous Division and Multiplication

Multiply the data stream I(x) by x16 and divide it simultaneously by (1 + x2 + x15 + x16)

S(x) = x16 I(x) mod (1 + x2 + x15 + x16)

The contents of the register after entering all I(x) bits is the rest of x16 I(x) mod (1 + x2 + x15 + x16)

S(x) = x16 I(x) mod (1 + x2 + x15 + x16)

Page : 20
bfolieq.drw

Example: order of x over an extension field GF(23) and hardware implementation

Compute the exponents of the element x over GF(23) which is generated by the irreducible polynomial

P(x)= (x3+ x +1)

Important notice:

In GF (23): the order of

any element Is a divisor

of 23-1=7

Divisors of 7 are
1, 7 !

The order can only be

1 or 7 !

+

A possible hardware generator for the exponents of x is as follows:

0 1 0

x0 x1 x2

Initial state = x = 010
LSB MSB

x0=1 x1 x3

Solution
If P(x)= x3+ x +1 is the modulus then it is equal to zero, that is x3 + x +1 = 0, thus x3 = x +1.

the exponents of x in GF(23) are:

x = x 010 mod (x3+ x +1)

x2= x2 100 mod (x3+ x +1)

x3= x3 = x + 1 011 mod (x3+ x +1)

x4= x x3 = x2 + x 110 mod (x3+ x +1)

x5= x x4 = x3 +x2 =x + 1 + x2 111 mod (x3+ x +1)

x6= (x3)2= (x+1)2=x2 +1 101 mod (x3+ x +1)

x7= x (x2 +1) = (x3 +x) = x+1 + x = 1 001 mod (x3+ x +1)

msb lsb

x8= x

The order of the

element x is 7=23-1
=> x is a primitive element

Page : 21
bfolieq.drw

Euclidian gcd Algorithm for Polynomials

Start

P1(x), P2(x)

yes

?

R(x)=R
p2(x)

[P1(x)]=0

no

P
1

(x)  P 2(x)

P 2(x)  R(x)

gcd  c-1 P
2
(x)

End

PS: [c-1 is the inverse of the leading

coefficient of P2(x)]

Page : 22
bfolieq.drw

Extended gcd Algorithm for Polynomials

Start

Divide P1(x) by P2(x)

P1(x) / P2(x) = Q(x) + R(x) / P2(x)

Input: P1(x), P2(x), P2(x)  0

Initialization:

A1(x) =1 , B1(x) =0

A2(x) =0 , B2(x) =1

Find the leading coefficient

c of P2(x)

yesno

gcd [P1(x) , P2(x)] = A(x) P1(x) + B(x) P2(x)

Page : 23
bfolieq.drw

Solution: Compute gcd [P1(x) , P2(x)] = A(x) P1(x) + B(x) P2(x)

if gcd =1, then the inverse is B(x)

Operating modulo x4 + x + 1 : R [(x) (x4 + x + 1) + (x2 + 1) (x3 + x + 1)] = 1

R [(x2 + 1) (x3 + x + 1)] = 1

Example: Compute the multiplicative inverse of x3 + x + 1 modulo x4 + x + 1

P1(x) A2(x)A1(x)P2(x) B2(x)B1(x) R(x)Qx)

x4 + x + 1 x3 + x + 1 1 0 0 1 x x2 + 1

x3 + x + 1 x2 + 1 0 1 1 x 1

x2 + 1 1 1 0 – x . 1 =

x
x 1 – x . x =

x2 + 1

0x2 + 1

B2 = B1 – q B2A2 = A1 – q A2

0 - x . 1=

x

gcd [P1(x) , P2(x)] = (x) (x4 + x + 1) + (x2 + 1) (x3 + x + 1) = 1

(x4 + x + 1)

=> (x2 + 1)  (x3 + x + 1) -1 modulo (x4 + x + 1)

(x4 + x + 1)

Check: (x2 + 1) (x3 + x + 1) = x5+ x3 + x2 + x3 + x + 1

 (x2 + x) + x2 + x + 1 = 1 modulo (x4 + x + 1)

x4 + x + 1=0

x4 = x + 1

x5 = x2 + x

Extended gcd Algorithm:

Page : 24
bfolieq.drw

Some additional extension field properties of interest

- If   GF(2m) is a root for g(x)=0, then are the roots of g(x)

- These roots build what is called the Canonical Base for the vector space representing that field.

2 3 4 1 , , , , m     

The “Normal base “ for a vector space representation of GF(2m) results with extremely

simple squaring arithmetic for polynomials/vectors as elements of GF(2m) .

The following example shows one interesting efficient implementing of a squaring

operation in GF(2m)

132 2222 , , , ,
m

  If () are linearly-independent, then they build what is called

the Normal Base for this GF(2m)

GF (2m) as a vector space

GF(2m) algebra is in general very attractive for implementing modern low-cost crypto

systems. The way of representing of data plays a major role in some cases to result with

extremely low-cost implementations.

5

Page : 25
bfolieq.drw

If however, are linearly independent,
132 2222
m

 

then represent the so called a Normal Base
132 2222
m

 

Particular Arithmetic cases in GF (2m) are sometimes very attractive

for practical hardware implementations

Example: Squaring in Normal Base representation (Massey-Omura US Patent 1982)

If  is a root of the field generating irreducible polynomial g(x) over GF(2), then

0 1 2 3 . . . m-1 build the Canonical Base for GF(2m). (example =x)

11221100
...




mm
bbbb 

GF(2m) is equivalent to a vector space with the dimension m:

represent a base for a vector space if: = 0

If and only if for b0= b1 = b2 = ... = bm-1 = 0, (Base vectors are linearly independent).
1210

,...,,
m



Squaring is equivalent to a “ring rotation” in normal base representation:

i.e if b = [b0 b1 b2 ... bm-1]

then:

Or in normal base representation

121 2

2-m

2

1

2

01-m

2 b b + b + b =
m

b  

  b b b b = b 2-m101-m

2 

Example of squaring in

a normal base system:

If a = 1 0 1 1

 a2 = 1 1 0 1

Page : 26
bfolieq.drw

Exponentiation for polynomials/vectors by square-and-multiply technique

Example: setup a hardware structure to compute b(x)25 in GF(25)

25 = (11001)2 = 20 + 23 + 24 = 1 + 8 + 16

b(x) = 1 + x + x4

= 10011

ββ2β4β8β16

Each ring-rotation clock

squares the register contents

0

1
0

1

β25
Nornal base

to canonical

converter

b(x)25

ββ8β16

*
Normal-base multiplier

Select a

normal base

Nornal base

converter

β =00101

β β8 β16
** = β25

21 = (1 1 0 0 1)2

