Introduction to Cryptology

Lecture-05
Mathematical Background: Extension Finite Fields
28.03.2023, v52

Mathematical Background
 In Discrete Mathematics, Number Theory

Outlines

- Euclidean Algorithm, Remainder	
Greatest Common Divisor (gcd)	part 1
- Group Theory, Rings, Finite Fields	
Element's Order, Euler Theorem	part 2
- Prime Numbers	
Prime Number Generation	part 3
- Extension Fields	part 4

Representing information in security systems as "Vectors"
(More flexible and efficient algebraic system for modern cryptography!)
Data representation in Integer algebra:
(1010)
(1010101)
$\Leftrightarrow 85$ Element in GF(89)
.
Alternatively data may be represented as vectors having entries from GF(13):
(32118 10) Vector having components from $\operatorname{GF}(13)$ with 5 entries, 4 bits each.
The result is a vector of 20 bits as follows:
$\begin{array}{llll}(0011 & 0010 & 1011 & \cdots \\ 1000 & 1010) & \text { (not all 4-bit combinations are usable!) }\end{array}$
Or fully usable binary vectors when using GF(31):
($101010001101110 \ldots 10110)_{1 \times 1000}, 5000$ bits, with algebra over GF(31)!
Or simply: $\left(\begin{array}{lll}1 & 0 & 1\end{array} 10101 . .10\right)_{1 \times 256} 256$ bits block/tuple with algebra over GF(2)
Question: Can we construct a "closed operational algebraic system" when describing data as such large vectors from a GF ?
The answer is yes, by using what is called Extended Finite Fields (GF) This section treats such data: $(101.10)_{1 \times n}$ as n-bit tuples/vectors over GF(2)

Vectors Represented as Polynomials over $\mathrm{GF}(2)$

```
A(\mathbf{x})\mathrm{ is a Polynomial over GF(2), }\mp@subsup{\mathbf{a}}{\mathbf{i}}{}\in\mathbf{GF(2)}}\mathbf{A}(\mathbf{x})=\mp@subsup{a}{0}{}+\mp@subsup{a}{1}{}x+\mp@subsup{a}{2}{}\mp@subsup{x}{}{2}+..\mp@subsup{a}{m}{}\mp@subsup{x}{}{m
```

Can represent a vector as polynomial $\mathrm{A}(\mathrm{x})$ with elements from $\mathrm{GF}(2)$
Example: \quad Polynomial $A(x)=x^{6}+x^{5}+x^{3}+1 \quad$ over $G F(2)$

Position 6543210
And in reversed direction (vector to polynomial)

Basic Vectors/Polynomial Arithmetic over GF(2)
Addition:

From now on, we will use the term polynomials to designate vectors and vice versa

How to create Algebra between vectors/polynomials?

For creating Finite Fields GF, non-factoriseable numbers called Prime Numbers were used as modulus (remainders modulo p)

Similarly:

For creating vector/polynomial-fields called "Extension Fields", non-factoriseable polynomials called "Irreducible Polynomials" are used as modulus (remainders modulo $\mathrm{p}(\mathrm{x})$)

What are "Irreducible Polynomials"

To attain closed field algebra "Irreducible Polynomials" are required! (Again: such polynomials play a similar role of "prime numbers" as field modulus) A polynomial $g(x)$ of degree m over $\mathrm{GF}(2)$ (2 is a prime!)

$$
\mathrm{g}(\mathrm{x})=a_{0}+a_{1} x+a_{2} x^{2}+\ldots a_{m} x^{m}\left(\mathrm{a}_{\mathrm{i}} \in \mathbf{G F}(2)\right)
$$

Is said to be an irreducible polynomial over $\mathrm{GF}(2)$ if factorizing $\mathrm{g}(\mathrm{x})$ is not possible Selected fundamental properties of irreducible polynomials
-The period e of $\mathrm{g}(\mathrm{x})$ is the smalleste such that $\mathrm{x}^{\mathrm{e}}=1 \quad[\bmod \mathrm{~g}(\mathrm{x})]$

- The period e is actually the multiplicative order of x modulo $\mathrm{g}(\mathrm{x})$. e divides $2^{\mathrm{m}}-1 \quad \mathrm{G}(\mathrm{x})=1011$ - If $e=2^{m}-1$, then the irreducible polynomial is then called a primitive plynomial $G^{x}(x)=1101$ - The reciprocal of a polynomial $g(x)$ is defined as $g^{*}(x)=x^{m} g(1 / x)$ (mirror polynomial): $G(x)=101$ - The reciprocal $g^{*}(x)$ is also irreducible having the same period as that of $g(x) \quad \begin{aligned} & G(x)=101 \\ & G^{*}(x)=G(x)=101\end{aligned}$ - If $\mathrm{g}^{\star}(\mathrm{x})=\mathrm{g}(\mathbf{x})$, then $\mathrm{g}(\mathrm{x})$ is said to be a self-reciprocal irreducible polynomial (symmetric) (highest possible period is a divisor of $2^{m 2}+1$) Non-trivial Self-reciprocal Polynomial can not be primitive!
 - Polynomial factorization is also an unsolved problem!?

! The Use of Irreducible Polynomials !
The ring of polynomials modulo any irreducible $\mathrm{g}(\mathrm{x})$ is designated as $\mathrm{Z}_{\mathrm{g}(\mathrm{x})}$ and builds an Extension Field

The ring of polynomials $\mathrm{Z}_{\mathrm{g}(\mathrm{x})}$ modulo any irreducible polynomial $\mathrm{g}(\mathrm{x})$ of degree m over $G F(2)$ is an Extension Field with 2^{m} elements of m-bit tuples. This is assigned as $\operatorname{GF}\left(2^{m}\right)$.

How to construct such m-bit closed vectors algebra?

- Select $g(x)$ as any irreducible polynomial of degree m and use it as a field modulus. The result is an "extension field" algebraic system on all m-bit vectors
(using prime number modulus in integer algebra. Corresponds to using irreducible polvnomial modulus in polynomial algebra)

Finding irreducible polynomials:
There are theories and techniques (similar to those of prime integers but more complex) for testing and generating irreducible polynomial. (this is out of the scope of this lecture).

The table shown before includes a full list of all irreducible polynomials over $\mathrm{GF}(2)$ up to degree 11 .
\qquad

Multiplicative order and primitive elements in GF $\left(2^{m}\right)$

Facts:

- Any non-zero element/vector in $\mathrm{GF}\left(2^{m}\right)$ builds a cyclic group.
- The multiplicative order of any element in $\mathrm{GF}\left(2^{m}\right)$ is a divisor of $2^{\mathrm{m}}-1$.
[The possible multiplicative orders are only the divisors of ($2^{m}-1$)]

A Primitive Element:

- Is the element having the highest possible multiplicative order, that is $=2^{m}-1$.
- The exponents of such element generate the whole non-zero group elements

Number of all existing primitive elements: is $\varphi\left(2^{\mathrm{m}}-1\right)$

Number of elements having order k: is $\varphi(k)$

Smallest Extension Field GF($\mathbf{2}^{2}$)

A full operational algebra on 2-bits vectors/polynomials

[^0]| Example: Element's order over the extension field GF(24)
 Compute the exponents of the element x over $\operatorname{GF}\left(2^{4}\right)$ which is generated by the irreducible polynomial $P(x)=\left(x^{4}+x+1\right)$ | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Solution
 If $\mathrm{P}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{x}+1$ is the modulus then it is equal to zero, that is $\mathrm{x}^{4}+\mathrm{x}+1=0$, thus $\mathrm{x}^{4}=\mathrm{x}+1$. the exponents of x in $\mathrm{GF}\left(2^{4}\right)$ are: | | | | |
| | $\mathrm{x}=\mathrm{x}$ | 0010 | $\bmod \left(x^{4}+x+1\right)$ | Important notice:
 In GF ($\mathbf{2}^{4}$): the order of any element Is a divisor of $2^{4}-1=15$
 Divisors of 15 are
 1, 3,5,15 !
 \Rightarrow The order can only be
 1 or 3 or 5 or 15 ! |
| \rightarrow | $\mathrm{x}^{2}=\mathrm{x}^{2}$ | 0100 | $\bmod \left(x^{4}+x+1\right)$ | |
| | $\mathrm{x}^{3}=\mathrm{x}^{3}$ | 1000 | $\bmod \left(x^{4}+x+1\right)$ | |
| \rightarrow | $\mathrm{x}^{4}=\mathrm{x}^{4}=\mathrm{x}+1$ | 0011 | $\bmod \left(x^{4}+x+1\right)$ | |
| | $x^{5}=x x^{4}=x^{2}+x$ $x^{6}=x\left(x^{2}+x\right)=x^{3}+x^{2}$ | 0110 | $\bmod \left(x^{4}+x+1\right)$ | |
| | $x^{6}=x\left(x^{2}+x\right)=x^{3}+x^{2}$ $x^{7}=x\left(x^{3}+x^{2}\right)=\left(x^{4}+x^{3}\right)=x+1+x^{3}$ | 1100 | $\bmod \left(x^{4}+x+1\right)$ | |
| \rightarrow | $x^{7}=x\left(x^{3}+x^{2}\right)=\left(x^{4}+x^{3}\right)=x+1+x^{3}$ | 1011 | $\bmod \left(x^{4}+x+1\right)$ | |
| | x $x^{9}=x^{3}+x^{3}+x$ | 1010 | $\bmod \left(x^{4}+x+1\right)$ | The order of the
 element x is $15=2^{4}-1$
 $=>$
 $=x$ is a primitive element |
| | $x^{10}=x^{4}+x^{2}=x+1+x^{2}$ | 0111 | $\bmod \left(x^{4}+x+1\right)$ | |
| \rightarrow | $\mathrm{x}^{11}=\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}$ | 1110 | $\bmod \left(x^{4}+x+1\right)$ | |
| | $x^{12}=x^{4}+x^{3}+x^{2}=x+1+x^{3}+x^{2}$ | 1111 | $\bmod \left(x^{4}+x-1+1\right)$ | |
| | $x^{13}=x^{4}+x^{3}+x^{2}+x=x^{3}+x^{2}+1$ | 1101-- | mod ($x^{4}+x+1$) | $\operatorname{Ord}\left(\alpha^{1}\right)=\mathrm{k} / \operatorname{ged}(\mathrm{i}, \mathrm{k})$ |
| | $\begin{aligned} & x^{14}=x^{4}+x^{3}+x=x+1+x^{3}+x=x^{3}+1 \\ & x^{15}=x^{4}+x=x+1+x=1 \end{aligned}$ | $\begin{aligned} & 1001 \\ & 0001 \end{aligned}$ | $\begin{aligned} & \bmod \left(x^{4}+x+1\right) \\ & \bmod \left(x^{4}+x+1\right) \end{aligned}$ | $\operatorname{Ord}\left(x^{1,2,4,7,8,11,13,14}\right)=15$ |
| | | | | Page: 13 |

Why Algebra over GF (2^{m})

for modern Cryptographic Systems

1- Less-complex processing for equivalent security levels
2- Faster running time
3- Lower hardware complexity and costs. Usable in modern smart card technology at commercially acceptable costs

Contemporary "Modern Crypto-Systems" are deploying this algebra in practical applications more and more intensively

The basic hardware processing units for the primitive arithmetic operations; addition, multiplication and division over $\mathrm{GF}\left(2^{n}\right)$ are given in a compact template-form in the following sections

Hardware Architectures for Arithmetic in GF $\left(2^{n}\right)$ Addition

Hardware Architectures for Arithmetic in GF (2m) Multiplication
$B(x)=H(x) \cdot I(x)$
Multiplikator: $\quad H(x)=h_{0}+h_{1} x+h_{2} x^{2} \ldots+h_{H X} x^{m}$
$\mathrm{I}(\mathrm{x})=\mathrm{i}(0) \mathrm{x}^{\mathrm{k}-1}+\mathrm{i}(1) \mathrm{x}^{\mathrm{k}-2}+\ldots+(\mathrm{k}-1) \mathrm{x}^{0}$

Hardware Architectures for Arithmetic in GF (2^{m})
Division

$\frac{\left.\frac{l(x)}{G(x)}=q(x)+\frac{R(x)}{G(x)}\right)}{}$
$\mathrm{G}(\mathrm{x})=\mathrm{g}_{0}+\mathrm{g}_{1} \mathrm{x}+\mathrm{g}_{2} \mathrm{x}^{2} \ldots \mathrm{~g}_{\mathrm{nf}} \mathrm{x}^{\mathrm{m}}$
$1(x)=i(0) x^{k-1}+i(1) x^{k-2}+\ldots+(k-1) x^{0}$
NOTE: $\mathbf{R}(\mathbf{x})$ is the conten
of the register after
of the register after
entering all $1(x)$ bits

Hardware Architectures for Arithmetic in GF (2^{m})
Combined Division and Multiplication

Arithmetic in $Z_{p(x)}$, size $\left(2^{16}\right)$
Example: (CRC: Cyclic'Redundancy Code/Check) Simultaneous D.iv́ision and Multiplication
$S(x)=x^{16} 1(x) \bmod \left(1+x^{2}+x^{15}+x^{16}\right)$
Multiply the data stream $\mathrm{I}(\mathrm{x})$ by x^{16} and divide it simultaneously by $\left(1+\mathrm{x}^{2}+\mathrm{x}^{15}+\mathrm{x}^{16}\right)$

$S(x)=x^{16} 1(x) \bmod \left(1+x^{2}+x^{15}+x^{16}\right)$
The contents of the register after entering all $1(x)$ bits is the rest of $x^{16} 1(x) \bmod \left(1+x^{2}+x^{15}+x^{16}\right)$

Euclidian gcd Algorithm for Polynomials

Extended gcd Algorithm for Polynomials

Example: Compute the multiplicative inverse of $\mathrm{x}^{3}+\mathrm{x}+1$ modulo $\mathrm{x}^{4}+\mathrm{x}+1$
Solution: Compute $\operatorname{gcd}\left[P_{1}(x), P_{2}(x)\right]=A(x) P_{1}(x)+B(x) P_{2}(x)$
if $\mathrm{gcd}=1$, then the inverse is $\mathrm{B}(\mathrm{x})$

Extended god Algorithm:			$\mathrm{A}_{2}=\mathrm{A}_{1}-\mathrm{q} \mathrm{A}_{2}$	$\mathrm{B} 2=\mathrm{B} 1-\mathrm{qB} 2$			
$\mathrm{P}_{1}(\mathrm{x})$	$\mathrm{P}_{2}(\mathrm{x})$	A1(X$)$	A2(x)	${ }^{81}(\mathrm{x})$	B2(x)	Qx)	$\mathrm{R}(\mathrm{x})$
$\mathrm{x}^{4}+\mathrm{x}+1$	$x^{3}+x+1$	1	0	0	1	x	$\mathrm{x}^{2}+1$
x^{3+x+1}	$\mathrm{x}^{2}+1$	0	1		$\underbrace{1}_{\substack{0-x .1 \\ x}}$	x	1
$x^{2}+1$	(1)	${ }^{1}$	$\underset{\substack{0-x .1 \\ x^{\text {a }}}}{ }$	${ }^{x}$	$\begin{gathered} 1-x \cdot x= \\ -x^{2}+1 \\ \hline \end{gathered}$	$\mathrm{x}^{2}+1$	0
$\begin{array}{cl} \text { Operating modulo } x^{4}+x+1 & R_{(x+x+1)}\left[(x)\left(x^{4}+x+1\right)+\left(x^{2}+1\right)\left(x^{3}+x+1\right)\right]=1 \\ & R_{(x+x+1)}\left[\left(x^{2}+1\right)\left(x^{3}+x+1\right)\right]=1 \end{array}$							
$\Rightarrow\left(x^{2}+1\right) \equiv\left(x^{3}+x+1\right)^{-1} \quad$ modulo $\left(x^{4}+x+1\right)$							
$\begin{aligned} & \left.\begin{array}{l} 4^{4}+x+1=0 \\ x^{4}=x+1 \\ x^{5}=x^{2}+x \end{array} \right\rvert\, \end{aligned}$	Check:	$\text { 1) } x^{3}+$	$\begin{aligned} & =x^{5}+x^{5}+x^{2} \\ & =+\left(x^{2}+x\right), \end{aligned}$	+x+1	modul	$+x+1)$	

GF $\left(2^{m}\right)$ as a vector space

Some additional extension field properties of interest

GF(2m) algebra is in general very attractive for implementing modern low-cost crypto systems. The way of representing of data plays a major role in some cases to result with extremely low-costimplementations.

- If $\alpha \in \mathrm{GF}\left(2^{m}\right)$ is a root for $\mathrm{g}(\mathrm{x})=0$, then $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \ldots \alpha^{m-1}$ are the roots of $\mathrm{g}(\mathrm{x})$ - These roots build what is called the Canonical Base for the vector space representing that field.
- If $\left(\alpha, \alpha^{2}, \alpha^{2^{2}}, \alpha^{2^{3}}, \ldots \alpha^{2^{\prime \prime-1}}\right)$ are linearly-independent, then they build what is called the Normal Base for this GF $\left(2^{m}\right)$

The "Normal base " for a vector space representation of GF(2^{m}) results with extremely simple squaring arithmetic for polynomials/vectors as elements of $\operatorname{GF}\left(2^{m}\right)$.
The following example shows one interesting efficient implementing of a squaring operation in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$

Particular Arithmetic cases in GF $\left(2^{\mathrm{m}}\right)$ are sometimes very attractive

 for practical hardware implementationsExample: Squaring in Normal Base representation (Massey-Omura US Patent 1982) GF $\left(2^{m}\right)$ is equivalent to a vector space with the dimension m :
 If and only if for $b_{0}=b_{1}=b_{2}=. .=b_{m .1}=0$, (Base vectors are linearly independent)

If α is a root of the field generating irreducible polynomial $g(x)$ over $G F(2)$, then
$\alpha^{0} \alpha^{1} \alpha^{2} \alpha^{3} \cdots \alpha^{m-1}$ build the Canonical Base for $G F\left[2^{m T}\right.$. (example $\left.\alpha=x\right)$
If however, $\quad \alpha \quad \alpha^{2} \alpha^{2^{2}} \alpha^{2^{3}} \ldots \alpha^{2 m-1}$ are linearly independent,
then $\alpha \alpha^{2} \alpha^{2^{2}} \alpha^{2^{2}} \ldots \alpha^{\alpha^{2 m-1}}$ represent the so called a Normal Base
Example of squaring in

Squaring is equivalent to a "ring rotation" in normal base representation:
i.e if $\underline{b}=\left[b_{0} b_{1} b_{2} \ldots b_{m-1}\right]$
then: $b^{2}=\mathrm{b}_{\mathrm{m}: 1} \alpha+\mathrm{b}_{0} \alpha^{2}+\mathrm{b}_{1} \alpha^{2^{2}} \ldots \mathrm{~b}_{\mathrm{m} 2} \alpha^{22^{2+1}}$
Or $b^{2}=\left[b_{m: 1} b_{0} b_{1} \ldots b_{m-2}\right]$ in normal base representation

Exponentiation for polynomials/vectors by square-and-multiply technique
Example: setup a hardware structure to compute $b(x)^{25}$ in $G F\left(2^{5}\right)$

[^0]: Summary and some extension field properties
 The algebra on m-bit vectors/polynomials over $\mathrm{GF}(2)$ using an irreducible polynomial $\mathrm{g}(\mathrm{x})$ of degree m as modulus, where $\mathrm{g}(\mathrm{x})=1+\mathrm{g}_{1} \mathrm{x}^{1}+\mathrm{g}_{2} \mathrm{x}^{2} \ldots+\mathrm{g}_{\mathrm{m}} \mathrm{x}^{m}$. [all computations are modulo $\mathrm{g}(\mathrm{x})$] result with what is called $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ having 2^{m} elements (vectors/polynomials).
 In $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ the following relationships hold:

 - Any non-zero element (multiplicative group element) β in $\mathrm{GF}\left(2^{\mathrm{m}}\right)$ has a multiplicative inverse.
 - The $\underline{2}^{2-1}$ non-zero elements build a cyclic group under multiplication.

 Group's order is $2^{m}-1$. (inverse computation: by using the extended gcd algorithm for polynomials)

 - The multiplicative order of any element is a divisor of $2^{m}-1$, the number of elements with order t is $\varphi(t)$ - For any non-zero element $\beta \in \operatorname{GF}\left(2^{m}\right)$ the following holds $\beta^{2^{m}-1}=1$
 (reason: the order of any element divides the group's order $2^{\mathrm{m}}-1$)
 If $\alpha, \beta \in G F\left(2^{m}\right)$ then: $\quad(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}$ or $[f(x)]^{2}=f\left(x^{2}\right)$
 (Notice: squaring is a linear operation in $\mathrm{GF}\left(2^{2 m}\right)$

