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Mathematical Background

In Discrete Mathematics, Number Theory

Outlines

Euclidean Algorithm, Remainder

Greatest Common Divisor (gcd) ‘ part1
« Group Theory, Rings, Finite Fields art 2

Element’s Order, Euler Theorem barts
« Prime Numbers

t3

Prime Number Generation ‘ —

 Extension Fields | partd
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Representing information in security systems as “Vectors”

(More flexible and efficient algebraic system for modern cryptography!)
Data representation in Integer algebra:
(1010) ® 10 Element in GF(13)
(1010101) ¢ 85 Element in GF(89)
Large data blocks require large field modulus and hence more complex arithmetic
Alternatively data may be represented as vectors having entries from GF(13):
(€] 2118 10) Vector having components from GF(13) with 5 entries, 4 bits each.
ST The result is a vector of 20 bits as follows:

R .
(0011 0010 1011 1000 1010) (not all 4-bit combinations are usablet)
Or fully usable binary vectors when using GF(31):
(10101 00011 01110 ... 10110), , 1000 , 5000 bits, with algebra over GF(31)!
Orsimply: (10110101..10);,,5 256 bits block/tuple with algebra over GF(2)
Question: Can we construct a “closed operational algebraic system”
when describing data as such large vectors from a GF ?

The answer is yes, by using what is called Extended Finite Fields (GF
This section treats such data : (10 1..10),,, as n-bit tuples/vectors over GF(2)
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Vectors Represented as Polynomials over GF(2)

A(x) is a Polynomial over GF(2), a; € GF(2) A(x) = 8+ al>(+a2x2 +.a,X

Canrep avector as polynomial A(x) with from GF(2)

iExampIe: Polynomial A(x)= x®+x%+x3+1  over GF(2)

MsB Y ¥ v Y oisg
Correspondingvector ( 1101001 )
Position 6543210

Andin direction (vector to poly ial)
Example : Position 6543210 |

Vector (110001 1)

Vo
Corresp. Polynomial  A(x) = x0+x5+x+1 !
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Basic Vectors/Polynomial Arithmetic over GF(2)
Addition:

AW =14x
B(x) _=1+x+x3 In binary form A o o
A(x)+B(x)= 2+2x +x3 A(x) +B(x) <& 1000

T R — ‘
(astH1=2=0InGF(2)) T

Multiplication:
Bx) & 1ot
AX)Bx) =(1+x)(1+x+x3 . AX) & gon
8 =1(1+x+x:§+x(1)¢x¢x:§ —1In binary form _, 101
=14 xS x o+ x24 xd 1011
=1+x2+x3+ x4 0000
0000 |

AX)*B(X) ¢ 0011101

From now on, we will use the term polynomials to designate vectors and vice versa
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How to create Algebra between vectors/polynomials?

For creating Finite Fields GF,
non-factoriseable numbers called Prime Numbers
were used as modulus (remainders modulo p)

Similarly:
For creating vector/polynomial-fields called “Extension Fields”,
non-factoriseable polynomials called “Irreducible Polynomials”
are used as modulus (remainders modulo p(x) )

What are “Irreducible Polynomials”
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To attain closed field algebra “Irreducible Polynomials” are required!
Again:

such polynomials play a similar role of “prime numbers” as field modulus)

| g(x) of degree m over GF(2) (2is a prime!)

Is said to be an irreducible polynomial over GF(2) if g(x) is not possible
Selected fundamental properties of irreducible polynomials

+The period e of g(x) is the smallest e such that x2=1  [mod g(x)]

+ The period e is actually the multiplicative order of x modulo g(x). e divides 2™ -1
«If e =2m-1, then the irreducible polynomialis then called a primitive plynomial
« The reciprocal of a polynomial g(x) is defined as g*(x) = x™ g(1/x) (mirror polynﬁhial
« The reciprocal g*(x) is also irreducible having the same period as that of g(x)

« If g*(x) = g(x), then g(x) is said to be a self-recip! poly
(highest possible period is a divisor of 22 + 1 )i Non-trivial Self. | Polynomial can not be primitive! !

- Generating “Irreducible Polynomials” is as difficult as generating prime numbers!
- Polynomi ization is also an unsolved problem!?
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List of all i i jials over GF(2 ) up to degree 11 (generated by exhaustive search)

erimidve ployn

@11 polynomal)

primitve ployn—"" oo

Primive oy

! The Use of Irreducible Polynomials !
The ring of polynomials modulo any irreducible g(x)

is designated as Z, and builds an Extension Field

The ring of polynomials Zg(x) modulo any irreducible polynomial g(x) of degree m over

! GF(2) is an Extension Field with 2m elements of m-bit tuples. This is assigned as GF( 2™).

How to construct such m-bit closed vectors algebra?
- Select g(x) as any irreducible polynomial of degree m and use it as a field modulus. The

result is an “extension field” algebraic system on all m-bit vectors
(using prime number modulus in integer algebra. Corresponds to using irreducible polynomial modaulus in polynomial algebra)

Finding irreducible polynomials :
There are theories and techniques (similar to those of prime integers but more complex) for testing
and generating irreducible polynomial. (this is out of the scope of this lecture).

The table shown before includes a full list of all irreducible polynomials over GF(2) up to degree 11.
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Smallest Extension Field GF(22) :
A full operational algebra on 2-bits vectors/polynomials

g(x) =x?+x+1=111 is irreducible of degree m=2 over GF(2). 00 <=> 0
g(x) is the modulus, therefore x2+x+1=0 => x2=x H1 01 <=>1
GF(2?) elements are :~———» 10 <=> x

1 <=> 1ax

Addition and multiplication tables in GF(2?) are:

® 0| 1| x|1x ®lof 1| x|1+x . ;
o [o | 1| x]rx ofolo oo i, U™ (i#x)  mod (< +x+1) 3
/=2 2x 8 |
1 [1]o |1+ / ]
XX 11011 L X 11X £ s qz ()= x 20 over GF(2) |
x [ x [1x[ 0] 1 x | o] x [1ex| 1
1+x [ex| x [ 1] 0 14x] 0 11+x] 1| x | or divide:
‘\j¢(’+2x+1)/(x1+x+1)=1 + xR+ x+1)]
® oo o1 |10 |11 @00 Jor |10 |11 + |
00 [00 Jor [10 [11 00 00 [0o |00 |00
01 |01 [00 |11 |10 01 [00 [o1 |10 [1 Remaindier of division
10 [10 [11 Joo o1 10 [o0 10 [11 [o1
11 [11 [10 [o1 [oo 11 [oo 11 [o1 [10
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Multiplicative order and primitive elements in GF (2™)

Facts:

- Any non-zero element/vector in GF(2™) builds a cyclic group.

- The multiplicative order of any element in GF(2™) is a divisor of 2m-1 .
[ The possible multiplicative orders are only the divisors of (2™-1) ]

A Primitive Element:
- Is the element having the highest possible multiplicative order, that is = 2m-1.
- The exponents of such element g the whole group

‘ Number of all existing primitive elements: is ¢ (2™-1) ‘

‘ Number of elements having order k: is ¢ (k) ‘
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Summary and some extension field properties

The algebra on m-bit vectors/polynomials over GF(2) using an irreducible polynomial g(x)
of degree m as modulus, where g(x) = 1+ g,x' + g, X2 ...+ g, x™ - [all computations are modulo g(x) ]
result with what is called GF(2™) having 2™ elements It

In GF(2™) the following relationships hold:

- Any non-zero element (multiplicative group element) (3 in GF(2") has a multiplicative inverse.
- The 2™-1 non-zero elements build a cyclic group under multiplication.
Group’s order is 2™-1. (inverse computation: by using the extended ged algorithm for polynomials)

- The multiplicative order of any element is a divisor of 21 , the number of elements with order tis o(t)
- For any non-zero element B € GF(2™) the following holds 132'"‘1= 1
( reason: the order of any element divides the group’s order 2™-1)

- If o, peGF@m) then: (a+p)2=a?+p? or [f(x)2=f(x)
(Notice: squaring is a linear operation in GF(2")
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Example: Element’s order over the extension field GF(2¢)

Compute the exponents of the element x over GF(24) which is generated by the irreducible polynomial
P(X)= (x4 x+1)

Solution

If P(x)= x* x +1 is the modulus then it is equal to zero, thatis x*+x +1=0, thus x*= x +1.

the exponents of x in GF(2¢) are:

Why Algebra over GF (2™)
for modern Cryptographic Systems

msb kb 1- L plex p ing for eq security levels
—> Xx=x 0010 mod (x4 x+1) Important notice: . ing il
5 x=x? 0100 mod (x+ x+1) In GF (29): the order of 2- Faster running time
x¥=x3 1000  mod (x*+x+1) any element Is a divisor 3- Lower hardware complexity and costs. Usable in modern smart card
— xt=xt=x+1 0011 mod (x*+ x+1) of 24-1=15 t . N
X5= X x4 = X2 +x 0110  mod (xé+x +1) Divisors of 15 are a Y -
Xo= x (2 4x)= 33 +x2 1100 mod (x4 x +1) L 355,15(!1 b
—> X=X (34X = (x4 ) = x H4x3 1011 mod (x+x+1) :;r Of g 'Oreé Zf"lg Ty be Contemporary “Modern Crypto-Systems” are deploying this algebra in
—> x3=xt+x24x = 1+ +x = 14x2 0101 mod (x*+ x+1) - . I . .
P b 1010 mod (c+ x+1) practical applications more and more intensively
X10= x4+ x2 = x+1 +x2 0111 mod (x*+ x +1)
T K= 4 M0 mod (xh+x+1) - The basic hardware processing units for the primitive arithmetic
X122 x4 433 +x2= x H1+ X3+ x2 M1 mod (x+x+T) N " - . L
— xB=xt e x2ax= B EN2H1] _M04---"Tiod ('+ x +1) Ord (o) = k / ged (i,k) operations; addition, multiplication and division over GF(2") are given in
— M=xt 3+ xExt 103 Hx =) #1--71001  mod (x*+x +1) form i followi :
P52 bk x =X+ 1 +x = 0001 mod (¢ x+1) Ord (x'24781.1314) = 15 a compact templ in the g sections
Page: 13 Page: 14
Hardware Architectures for Arithmetic in GF (2")
Addition Hardware Architectures for Arithmetic in GF (2™)
Multiplication
Parallel Sequential
Y ; - Multiplikator: H(x) = hg+h x+hyx2 +h,x™
T-%eF ; : . 1, —
o] e w ey P 100 = HOX U (1)x % ot (k1)
S |=|22| @ |bz a; | o
Bl L i * L E: [ 160 = MO (DX 4 (= 1x® MSB
a g AT 1(x) = .. i(2),i(1), itﬂ
o " s h‘,:@js,, L HOO ¢ i ) : Hjl
U N >
®-{s] é*ﬁ i @& [5®—B ()
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Hardware Architectures for Arithmetic in GF (2™)
Hardware Architectures for Arithmetic in GF (2™) Combined Division and Multiplication
Division .
Input bits I(x): ‘
‘ik-| Ek |

x) _ R(x)
0 Qx) + )

NOT R(x) is the content
i of the register after
i entering all I(x) bits

G(x) = gote, Xty xZ.guX

1(x) = (O Hi()x* & +(k-1)x°

R() = Sx0+8 xhag x™

Page: 17

o VN
BN
O\o‘*\k o g

ig ity

Output sequence

Multiplier: H(x) = hy+ hx"+ hx? - + h,xm
Divisor: G(x)=gy+gx'+gx? - +g,xm
Input: Ix) =ig+ix!+ix® ~ +ixk

Remainder:
R(x)=H(x) * I(x) mod G(x)

R(X)= 1+ rx!+rx2 -+, xm!
=5+ sx"+5,x2 ~ +5, x™ after clock k+1
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. L. . 16
Arithmeticin Z,, , size (2'°)
Example: (CRC: Cycli,cﬁedundancy Code/Check)
Simultaneous Division and Multiplication
I3
S(x) = x™ I(x) mod (1 +x2 + x5 +x16)
Multiply the data stream I(x) by x'® and divide it simultaneously by (1 + x2 + x'5 + x'¢)

LI

S(X) = X 1) mod (1+x2+x15 +x1)

The contents of the register after entering all I(x) bits is the rest of x'6 I(x) mod (1 + x? + x5 + x'6)
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Example: order of x over an extension field GF(2°) and hardware implementation
Compute the exponents of the element x over GF(2%) which is generated by the irreducible polynomial
P(X)= (x3+ x +1)

Solution

If P(x)= x3+ x +1 is the modulus then it is equal to zero, thatis x3+x+1=0, thus x3= x +1.

the exponents of x in GF(2?) are: msb lsb
010 mod (x3+ x +1) Important notice:
100 mod [+ x+1) In GF (2%): the order of
011 mod (x3+ x +1) anyaelement Is a divisor
10 mod (X x+1) g‘ 2%1=7 .

=X +14+x2 m mod (x3+ x +1) 1'v7'5‘m5 ot rare
XB= (x3)2= (x+1)2=x2 +1 101 mod (x* x+1) ZThe order can only be
XK= x (1 +1) = (3 +x) = x+1 +x=(1) <001 mod (x*x+1) lor7!
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Euclidian gcd Algorithm for Polynomials

Pi(x), Pa(x)

PS:[c'is the inverse of the leading
coefficient of P,(x) ]

ged ¢t P(y

P (X « P
Pa(x) < R(x)

L]

Extended gcd Algorithm for Polynomials

G [ged [Py P01 = AK) Py(9 +BX) P,() |

nput: Py(0), P(x), Pofx) # 0
Iniaization:

A=, Bx=0
A=, Byfx)=t

Divide P(x) by Py(x)
Py(x)/Pox)= Q) + Rix)/Pfs)

Wpoote)

RO0 = R0

RO ROO

T00— A0
A+ ADO-0C0AGX)
A TOO
Too— 30
B0 00-000BE0
Boo— T00

x

Page: 21 Page: 22

Example: Compute the multiplicative inverse of x3+ x + 1 modulo x4 +x + 1 GF (zm) as a Vector space

Solution: Compute. 9od [P(x), Py(x) 1 = Alx) P1(x) + B(x) Py(x) Some additional extension field properties of interest

if ged =1, then the inverse is B(x)
Extended ged Algorithm: [me=mizanz] [G2=e1-qez GF(2™) algebrais in general very attractive for implementing modern low-cost crypto
systems. The way of representing of data plays a major role in some cases to result with

P9 P29 AL A2(9 B1() 82(9 ) R extremely low-cost implementations.
xEx+1 Px+1 1 0 0 1 | x| x+1
R I B e I 0-x.1= . \ If o € GF(2")is aroot for g(x)=0, then & , @?, @°, a*,... «™ are the roots of g(x)

AVEN

xt+1 @ 1 0-x.1= x I-x.x= a1 0
x Xt

\

7
Qod[Py(x), P, 1= (x) (4 x+1) + (R47) (S +x+1)=1
Operating modulo x* + X +1: Resruyy [ (X) (XF+x+1) + (x2+1) (C+x+1) ]=1
X 41) (F+x+1)]=1

ey [0

|:> (@ +1) =(+x+1)" modulo (x*+x+1)

Check: (x2+1) (x*+x+1)=x5+ x4 x2 x4 x +1
2+ L) #2H%+1 =1 modulo (x* +x+1)
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- These roots build what is called the Canonical Base for the vector space representing that field.

7 f (&, a? a,a?,...a*"")arelinearly-independent, then they build what s called
i the Normal Base for this GF(2m)

The “Normal base “ for a vector space representation of GF(2™) results with extremely

simple squaring aritt for poly asel of GF(2m).
The following example shows one i ing efficient il ing of a squaring
operation in GF(2™)
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Particular Arithmetic cases in GF (2™) are sometimes very attractive
for practical hardware implementations

Example: Squaring in Normal Base representation (assey-omura Us Patent 1982)

GF(2m) is equivalent to a vector space with the dimension m:
Q,,0,0,,..0  represent a base for a vector space if: b.a,+ba, +ba,+..+b a, =0
Ifand only if for by=b,=b,=...=b,,=0, (Base vectors are linearly independent).

If e is a root of the field generating irreducible polynomial g(x) over GF(2), then
o @' a? «® -+ o™ build the Canonical Base for GF(2"). (example a=x)

Example of squaring in
anormal base system:
If a=1011
2 -t LO%
then ¢ a® a® a® ...a” represent the so called a Normal Base |

e

Ifhowever, o o’ a® «

are linearly independent,

Squaring is equivalent to a “ring rotation” in norial base representation:

then: b7 =b,a+ba? +ba® ..b a7

orb? =[b,,; by by ... b,,] innormal base representation
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Exponentiation for polynomials/vectors by square-and-multiply technique

Example: setup a hardware structure to compute b(x)2® in GF(2%)

25=(11001),=20+23+2¢=1+8+16 Each ring-rotation clock
squares the register contents.
21=(11001),
b(x)=1+x+x4 Nornal base | 8=00101 [¢
=10011 converter —> ?
2
Select a
normal base

Normal-base multplier

Nornal base b(x?
EZS to canonical |——>
converter
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