Introduction to Cryptology

Lecture-04
Mathematical Background: Prime Numbers
22.03.2023, v42

Mathematical Background
 In Discrete Mathematics, Number Theory

Outlines

- Euclidean Algorithm, Remainder Greatest Common Divisor (gcd)
part 1
- Group Theory, Rings, Finite Fields Element's Order, Euler Theorem
- Prime Numbers

Prime Number Generation
part 3

- Extension Fields
part 4

Prime Numbers

Primes are necessary to generate finite fields (GF)
Prime numbers like : $2,3,5,7, \ldots . .13,17,19 \ldots .$.
A prime only divisible by 1 or itself
A prime only divisible by 1 or itself
How many primes do exist between 1 and n ?
The number of such primes $\pi(n)$ is found to be approximated by:
(Tchebycheff Theorem)
(First indicated by Gauss without proof)

Where; $\ln =\log _{\mathrm{e}}$ js the natural logarithm, $e=\sum 1 / n!$ (for $n=1$ to $\left.\infty\right)=2.718$.. (Euler's number) Or $e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=2.718281828459 \ldots$

Example: The probability that a randomly picked up integer r is a prime number
for $1 \leq r \leq n=10^{100}$ is:
$\mathrm{P}_{\mathrm{r}}(\mathrm{r}=$ prime $)=\frac{\pi(\mathrm{n})}{\mathrm{n}} \approx \frac{1}{\ln (\mathrm{n})} \approx \frac{1}{230} \quad\left(\mathrm{n}=10^{100}\right)$

Sample prime numbers
To get a provably prime p, needs exhaustive factorization of p : Worst case complexity $\approx 0(\sqrt{ } p)$

How to Find Probably-Primes ?

Based on: Fermat's Theorem

- If p is a prime number
then for any $1 \leq b<p$

$$
b^{\mathrm{p}-1}=1 \quad(\bmod p)
$$

- Primality test: If an integer m fulfils Fermat theorem condition for some random integer b ,

That is; if $b^{m-1}=1 \quad(\bmod m)$
then m is called a pseudoprime to the base b .

- The probability that m is not a prime is ≈ 2.1

Therefore, for t such successful random tests, this probability is $\approx 2 \cdot t$

- Miller test : an improved test used to check "pseudo-primality" based on Fermat theorem

How to Find Provably-Primes ?
Based on Pocklington's Theorem (1916)

Pocklington's Theorem

Let $n=1+F R$ and let $F=q_{1} \ldots q_{t}$ be the distinct prime factors of F.
If there exists an integer a such that all the following three conditions hold

1. $a^{n-1} \equiv 1(\bmod n)$
2. for all $q_{i} s$ where $i=1 . . t, \quad \operatorname{gcd}\left(a^{(n-1) / q i}-1, n\right)=1$,
3. if $F>\sqrt{ } n$,
then n is prime.
The probability that a randomly selected a satisfies Pockington's Theorem is $(1-\Sigma 1 /$ qi)
```
Example: }\textrm{n}=2(3\cdot11)+1=67,\quad\textrm{F}=3\times11\mathrm{ and }\textrm{R}=2.\quad\mathrm{ Is }67\mathrm{ a prime?
    roof: select a=2 (1<a<67)
1. 260.7 =1 mod 67(orin ( }\mp@subsup{Z}{67}{\prime}\mathrm{ ) is true
2. }\operatorname{gcd}(\mp@subsup{2}{}{(67-1/1/3}-1,67)=\operatorname{gcd}(\mp@subsup{2}{}{22}-1,67)=1 is true (selecting a=2
    gcd (2 (671/1/11-1,67)=gcd (26-1,67)=1 is true
    F=3\times11>\sqrt{}{67}=>>33>8.18 is true }=>67\mathrm{ is prim
Check: condition 1: 200-1 = 299=88 =1(mod 100) is not true, condition 2: is not true => 100 is not a prime!
```


Special Useful Primes

Strong Primes

A prime number p is said to be a strong prime if $(p-1)$ has a large
prime factor q, in best case $p-1=2 q \quad$ (that is $p=2 q+1$)
Example: $p=23, p-1=22=2 \times 11$, that is $q=11$.
Mersenn Primes

Are primes having the form $2^{\mathrm{k}}-1$ in binary form k 1 's $1111 \ldots 111$
Known Primes for $\mathrm{k}=2,3,5,7,13,17 \ldots . . .82589933$ (status 2018)
k-1 time 0's

Primes in the form $2^{\mathrm{k}}+1$ in binary form $10000 \ldots 0001,(k+1$ bits)
Are primes with practical importance known for $\mathrm{k}=0,1,2,4,8,16$
Example: $\left(2^{16}+1\right)$ is a prime used in practical crypto-systems

Setting up GF(67) Algebra

Some facts in GFF67)

Number of invertible elements in $\mathrm{GF}(67)$ is Euler function $\phi(67)=(67-1)=66=2.3 .11$ The possible multipicative orders in $\mathrm{GF}(67)$ are the divisors of 66 namely $1,2,3,6,11,22,33,6$ The possible multipicicative orders in 6 (6) are the divisors of 66 namely $1,2,3,6,11,22,35$,
Notice: Prime factors of 66 are known when constructing the prime $67=2 \times(3 \times 11)+1$
Number of elements with order 1 is $\phi(1)=1$
Number of elements with order 33 is $\phi(33)=\phi(3 \times 11)=(3-1)(11-1)=20$ Number of elements with order 66 is $\phi(66)=\phi(2 \times 3 \times 11)=(2-1)(3-1)(11-1)=20$
Example: order of $11: 11^{1}=11 \neq 1,11^{2}=-13 \neq 1,11^{3}=-9 \neq 1,11^{6}=14,11^{11}=30,11^{22}=29 \neq 1$ $11^{33}=29 \times 11=-1 \neq 1 \Rightarrow \quad$ order of 11 is 66 .
Now we know that the order of 11 is 66 , thus $\operatorname{Ord}\left(11^{1}\right)=66 / \operatorname{gcd}(66, i)$.
by selecting $\mathrm{i}=2=>$ order $\left[11^{2}=54\right.$] $=66 / 2=33$.
by selecting $i=5=>$ order $\left[11^{5}=50\right]=66 / 1=66$.
by selecting $i=6=>$ order $\left[11^{6}=14\right]=66 / 6=11$.
Mult. Inv of 31 in $G F(67)=13$ aa $-q a_{2} \quad b_{1}-q b_{2}$

Special Useful Primes

Strong Primes
A prime number p is said to be a strong prime if $(p-1$) has a large
prime factor q, in best case $p-1=2 q$
Example: $p=23, p-1=22=2 \times 11$, that is $q=11$.
Mersenn Primes

Are primes having the form 2^{k}-1 in binary form k 1's $1111 \ldots . .1111$
Known Primes for $\mathrm{k}=2,3,5,7,13,17 \ldots . . .82589933$ (status 2018)
k-1 time 0's

Primes in the form $2^{\mathrm{k}}+1$ in binary form $10000 \ldots 0001$, ($k+1$ bits)
Are primes with practical importance known for $\mathrm{k}=0,1,2,4,8,16$
Example: $\left(2^{16}+1\right)$ is a prime used in practical crypto-systems

Special Useful Primes	
Fermat Primes	
Example: exist for: $n \in\{0,1,2,3,4, ?\}$	
Permutable prime	
is a prime with at least two distinct digits which remains prime on every rearrangement (permutation) of the digits:	
Example: 337, 373, 733 are all primes (in the decimal system, base 10)	
Palindromic Prime	
Example of a pyramid of palindromic primes:	${ }_{132320331}^{331}$
	${ }_{\text {173 }}^{1733202033171}$
	18151217713320203317121215181
	Page: 11

Hardware Complexity of Modular Multipliers with Special Primes Example when using Mersenn prime as modulus:

Special Practically Standardized Primes	
!!!! Primes represent still a big scientific mystery with serious impact on mdern everday's life!!!!	
The five NIST primes are:	
$\begin{aligned} & p_{192}=2^{192}-2^{64}-1 \\ & p_{256}=2^{256}-2^{244}+2^{192}+2^{96}-1 \\ & p_{521}=2^{521}-1 \end{aligned}$ The largest prime p_{521}, is a Mersenne Except for p_{52}, the exponents of 2 in This leads to efficient tricks for arithm	$\begin{aligned} & p_{224}=2^{224}-2^{96}+1 \\ & p_{384}=2^{384}-2^{128}-2^{96}+2^{32}-1 \end{aligned}$ rest are generalized Mersenne primes. s are all multiples of 32 or 64 . h primes executed on 32 -bit or 64 -bit computers.
secp256k1 is used for Bitcoin operating over GF(p)	
Where $p=$ FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F (in HEX) $p=2^{256}-2^{32}-2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1$	
Golden primes and Goldilocks for Elliptic-Curve systems ED448:	
(by Mike Hamburg) The prime in this case is $p=2^{448}-2^{224}-1$ called the "Goldilocks" prime. In the form $p=\varphi^{2}-\varphi-1$ where $\varphi=2^{224}$. The middle term 2^{224} is just the right size. Because $224=32^{*} 7=28^{*} 8=56^{*} 4$, this prime supports fast arithmetic in radix 2^{28} or 2^{32} (on 32 -bit machines) or ${ }^{256}$ (on 64 -bit machines).	

Modular Multiplication Complexity for ED448 modulus

 Golden primes and Goldilocks for Elliptic-Curve ED448: (by Mike Hamburg) The prime $p=2^{448}-2^{224}-1$ is used as modulus in $\operatorname{GF}(p)$. Where $p=\varphi^{2}-\varphi-1$ and $\varphi=2^{224}$As p is the modulus, $p=\varphi^{2}-\varphi-1=0$ therefore $\Rightarrow \varphi^{2}=\varphi+1$ and $\varphi=2^{224}$
X_{1} and X_{2} are two integers each having 448-bits and can be describes as follows:

$\chi_{1}=(a+\varphi b)$ and b are two 224-bits integers,		
	a	$2^{224} \mathrm{~b}$
$\chi_{2}=(c+\varphi d) \quad$ and d are two 224-bits integers	c	$2^{224} \mathrm{~d}$

The product of the two 442-bit integers $X_{1} \cdot X_{2} \bmod p$ can be computed as follows:
$X_{1} \cdot X_{2}=(a+b \varphi) \cdot(c+d \varphi)=a c+(a d+b c) \varphi+b d \varphi^{2}$
$x_{1} \cdot X_{2} \bmod p \equiv a c+(a d+b c) \varphi+b d \varphi^{2} \bmod p$
$=a c+b d+(a d+b c+b d) \varphi$
$=a c+b d+(a d+b c+b d+a c-a c)$
$=a c+b d+(a d+b c+b d+a c-a c)$
$X_{1} \cdot X_{2} \bmod p \equiv(a c+b d)+\varphi[(a+b)(c+d)-a c$
Complexity: four 224-bits multiplications and four 224-bit additions/subtractions

Example: Tricky ED448 Modular Multiplier Construction: (by Mike Hamburg
The prime $\rho=2^{248}-2^{224}-1$ is used as modulus. Where $\rho=\varphi^{2}-\varphi-1$ and $\varphi=2^{224}$
Constructing a computation structure for: $X_{1} \cdot X_{2} \bmod p \equiv(a c+b d)+\varphi[(a+b)(c+d)-a c]$

