Introduction to Cryptology

Lecture-04 Mathematical Background: Prime Numbers

22.03.2023, v42

Page : 1

Mathematical Background In Discrete Mathematics, Number Theory		
Outlines Euclidean Algorithm, Remainder 		
Greatest Common Divisor (gcd)	part 1	
Element's Order, Euler Theorem	part 2	
Prime Numbers Prime Number Generation	part 3	
Extension Fields	part 4	
		Page : 2

List of Drimes up to 1402																				
						_ L	ist (of P	rim	es u	p to) 44	83							
2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	7
191	193	197	190	211	223	227	229	213	230	241	137	139	149	151	157	163	167	173	179	18
311	313	317	331	337	347	349	353	359	367	373	379	383	389	397	401	409	419	421	431	43
439	443	449	457	461	463	467	479	487	491	499	503	509	521	523	541	547	557	563	569	57
577	587	593	599	601	607	613	617	619	631	641	643	647	653	659	661	673	677	683	691	70
709	719	727	733	739	743	751	757	761	769	773	787	797	809	811	821	823	827	829	839	85
1009	1013	1019	1021	1031	1033	1039	1049	1051	1061	1063	1059	1087	1091	933	967	9/1	977	983	991	99
1151	1153	1163	1171	1181	1187	1193	1201	1213	1217	1223	1229	1231	1237	1249	1259	1277	1279	1283	1289	129
1297	1301	1303	1307	1319	1321	1327	1361	1367	1373	1381	1399	1409	1423	1427	1429	1433	1439	1447	1451	145
1459	1471	1481	1483	1487	1489	1493	1499	1511	1523	1531	1543	1549	1553	1559	1567	1571	1579	1583	1597	160
1759	1777	1013	1019	1021	1627	1637	1657	1663	1667	1009	1093	1697	1699	1709	1721	1723	1733	1741	1747	175
1933	1949	1951	1973	1979	1987	1993	1997	1990	2003	2011	2017	2027	2029	2039	2053	2063	2069	2081	2083	208
2089	2099	2111	2113	2129	2131	2137	2141	2143	2153	2161	2179	2203	2207	2213	2221	2237	2239	2243	2251	226
2269	2273	2281	2287	2293	2297	2309	2311	2333	2339	2341	2347	2351	2357	2371	2377	2381	2383	2389	2393	239
2411	2417	2423	2437	2441	2447	2459	2467	2473	2477	2503	2521	2531	2539	2543	2549	2551	2557	2579	2591	259
2609	2617	2621	2633	2647	2657	2659	2663	2671	2677	2683	2687	2689	2693	2699	2707	2711	2713	2719	2729	273
2909	2917	2927	2939	2953	2957	2963	2969	2971	2000	3001	3011	3019	3023	3037	3041	3049	3061	3067	3079	308
3089	3109	3119	3121	3137	3163	3167	3169	3181	3187	3191	3203	3209	3217	3221	3229	3251	3253	3257	3259	327
3299	3301	3307	3313	3319	3323	3329	3331	3343	3347	3359	3361	3371	3373	3389	3391	3407	3413	3433	3449	345
3461	3463	3467	3469	3491	3499	3511	3517	3527	3529	3533	3539	3541	3547	3557	3559	3571	3581	3583	3593	360
3613	3617	3623	3631	3637	3643	3659	3671	3673	3677	3691	3697	3701	3709	3719	3727	3733	3739	3761	3767	376
1943	1947	3967	1989	4001	4003	4007	4013	4019	4021	4027	4049	4051	4057	4071	4079	4091	4003	3923	3929	393
4129	4133	4139	4153	4157	4159	4177	4201	4211	4217	4219	4229	4231	4241	4243	4253	4259	4261	4271	4273	478
4289	4297	4327	4337	4339	4349	4357	4363	4373	4391	4397	4409	4421	4423	4441	4447	4451	4457	4463	4481	448

Strong Primes	
A prime number p is said to be a <u>strong p</u> prime factor q, in best case p -1 = 2q (<u>Example</u> : p=23, p-1 = 22 = 2 x 11, tha	<u>prime</u> if (p-1) has a large (that is p=2q+1) t is q=11.
Mersenn Primes Are primes having the form 2 ^k -1 in bin <u>Known Primes</u> for k= 2, 3, 5, 7, 13, 17 .	ktime 1's
Primes in the form 2 ^k + 1 in binary for Are primes with practical importance kno Example: (2 ¹⁶ +1) is a prime used in prac	<u>k-1 time 0's</u> irm 100000001, (<i>k+1 bits</i>) wn for k= 0, 1, 2, 4, 8, 16 ctical crypto-systems

