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Introduction to Cryptology

15.03.2023, v53

Lecture-3
Mathematical Background : 

A quick approach to Group and Field Theory
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• Euclidean Algorithm, Remainder

Greatest Common Divisor (gcd)

• Group Theory, Rings, Finite Fields

Element’s Order, Euler Theorem

• Prime Numbers

• Prime Number Generation

• Extension Fields

Outlines

Mathematical Background
In Discrete Mathematics, Number Theory

part 1

part 2

part 3

part 4

Page :  3
bfolieq.drw

Mapping function F :

Domain: input choices

Range : Output choices

Main Objectives for Crypto-Mappings/functions

Domain
Range

“One-To-One”  functions:

No output from two different inputs

1

2

3

13

17

9

22

F

1

2

3

13

17

9

22

F

“Onto”  functions:

Every output results from at least one input
(scanning the input space would scan the whole output space)

1

2

3

1

3

4

2
F

Page :  4
bfolieq.drw

Targeted Crypto-Mappings

Bijective Function/Mapping :
IIs a mapping which is:  

One-to-One AND Onto at the same time

- A function F has an inverse function F-1, 

if and only if F  is one to one

Permutation:
A bijective function from a set to itself is also called a 

permutation (Domain = Range)

1

2

3

F

1

2

3

Crypto-Mappings use mostly permutations

to keep data size unchanged. 

(domain space is the same as the range pace)

1

2

3

F
a

b

c

Domain Range

Set: (1,2,3) Set: (a,b,c)

Set: (1,2,3) Set: (1,2,3)

6 possible permutations

123 to 123

123  to  132

123  to  231

123  to  213

123  to  312

123  to  321

Number of permutations: 3! = 3 x (3-1) x (3-2) = 6

In general: |F| = Number of n to n permutations = n! 

≠
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Number of all possible mappings = 2 4x16  = 264 mappings

Number of possible invertible mappings = 24 ! = 20.922.789.888.000

# bits required to select all possible invertible mappings = log2 24! = 44.25 

Engineering approach:
Permutations Bounds

Mapping as a hardware-block:

A mapping function from t-bits to t-bits

keeping the input space=output space
(Data size unchanged!)

- Domain size = number of possible input combinations= n = 2t

F

Input (Domain) Output (Range)

t-bits t-bits

- Number of all possible “F” mappings = 2
t 2 t

- Number of all possible invertible mappings    Smax= 2t !

- Number of bits needed to select all Smax mappings = log2 Smax= log2 2t ! ≈ t 2t bits

≈ t 2t bits

Example: t=4, 4-bit to 4-bit mapping
F

4-bits 4-bits

44.25 bits

Stirling's approximation                                       or Smax≈ 2 (t -1.45) 2t
Smax= 2t! ≈  

2t

[ 2t/e ] 
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Semigroup  <S , *>
S   set of elements

*    operation

a * b = c   , with  a, b, c  S   (closure)

a * (b * c) = (a * b) * c ,  where  a,b,c  S  (associative)

Group Theory

Monoid <M , *>

< M , * >  < S , * > in addition to  a particular element e

- e is  called the neutral element of the monoid with the properties: 

e * a  =  a * e  = a    and   a, e  M

- e is unique

- an element a is invertible under   *  if  there is   b  M such that:  

a * b = b * a = e

b= a-1 is  called the inverse of  a under the Monoid operation *  (the inverse b is unique)
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Group  <G, *>
• Is a  Monoid, with all element  are invertible under the operation * of  G, that is: 

for any element a from G, there is  c  G such that :  c * a = e,    (c = a-1)    

• If     a * b = b * a then the group is called abelian (or a Commutative Group)

!! Groups are the most used algebraic structures in cryptography !!

Examples:

Z is a group under addition where e=0 . The additive  inverse of  any b Z is -b which 

also an element in Z

Z is however a Monoid under multiplication where e=1, as not every element has a 

multiplicative inverse (example there is no additive inverse for 2)
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Ring  <R, +, * >

<R, + >      <=> abelian group with e=0

<R, *>       <=>  Monoid with e=1

The following holds:

a(b + c)  =  ab + ac

(b + c)a  =  ba + ca     mit a,b,  R

The Ring is commutative if:

a * b  =  b * a

Example: Z10 = {0,1,2,.....9}  is the ring  of integers modulo 10  with 

 :  Addition modulo 10

 :  Multiplication modulo 10
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Not all element in Zm are invertible under multiplication

Example:

The Monoid Z10    under  (multiplication modulo 10)

where e=1, as  a  e = e  a = a  for  a, e  Z10

Invertible elements in < Z10,  >  are:

1 1 = 1   =>   1-1 = 1

3 7 = 1   =>   3-1 = 7

9 9 = 1   =>   9-1 = 9

7 3 = 1   =>   7-1 = 3

1, 3, 7 and 9 are the only invertible elements in Z10

4  1 = 4

4  2 = 8 

4  3 = 2

4  4 = 6

4  5 = 0

4  6 = 4

4  7 = 8

4  8 = 2

4  9 = 6

=> 4 has no inverse!

4 is not invertible as:

Invertible elements are called units
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Definition: If an integer is invertible under multiplication modulo m, then it is called a unit
Example:  2 x 3 = 6 = 1    (mod  5)

says that  :        3 is the multiplicative inverse of  2  modulo 5    (2-1=3)

or 2 is the multiplicative inverse of  3 modulo 5    (3-1=2)

Fundamental Theorem of units:

An integer  u is a unit modulo m (or u has a multiplicative inverse modulo m) iff (if and only if):

gcd (m, u) = 1

Computing the multiplicative inverse: If gcd (m, u) = 1  then     a.m + b.u = 1

Taking the remainder modulo m of both sides:   Rm (a m + b u) = Rm (1) 

Rm (b . u) = 1  

or Rm b • Rmu =1    =>     u-1 = Rm (b)

or      u-1 =b   (mod m)

That is the multiplicative inverse of u mod m is the parameter b mod m in the extended Euclidian gcd Algorithm.

Reminder: Units and the Modular Multiplicative Inversion

Example: gcd (13, 2) = 1  =  1 . 13  - 6 . 2      (Extended Euclidian Algorithm)  

R13 (1 . 13  – 6 . 2) = 1

R13 (-6 . 2) = 1   => R13 (2-1) = -6  or    -6 = -6+13 = 7    (mod 13)

That is    2-1 = -6 or 7 Check:  2 • -6 = -12 = 1   (mod 13)  or   2 . 7 = 14 = 1   (mod 13)
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The Group  Z*
m in  Zm

The (units) invertible elements  under multiplication in Zm

build a group under multiplication this group is called Z*
m

Example:
1, 3, 7 and 9 are the only invertible elements in Z10

==> Z*
10 = { 1, 3, 7, 9 }   is a multiplicative group 

The neutral element is:   e =1

The inverse of any element  in Z*
10 is computable by the extended gcd algorithm 

The number of elements in  Z*
m is called the order of the group Z*

m , the 

number is computable if m is possible to be factorized. 

This number is known as Euler Function (m)
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Invertible Elements and Euler Function   (m)

Example 1: (15) = (5.3) =15 (1-1/5) (1-1/3)= (5-1)(3-1) = 8

(This means that only 8 integers modulo 15 have a multiplicative inverse. Which?)

!! No technique is known to compute (m) without factoring m !!

For m = P1 P2 P3 .... Pt where Pi  Pj  for all i, j and  Pi  is  a prime 

and ei  is a positive integer for any i.

The order  of  Z*
m is called Euler Function (m) where:

e1 e2 e3 et

(m) : is the number of non-zero integers less than m and relatively prime to m

(m) represents therefore the number of invertible elements in Zm.

(m) = m ( 1  - ) ( 1  - ) …   ( 1 - )
P2

1

P1

1

Pt

1

Example 2: (45) = (5.32) = 5.32 (1-1/5) (1-1/3)= 24
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Example: Number of units

The invertible elements (units)  in  < Z15 ,  > are all elements u for which

gcd (15, u) = 1

The number of units modulo 15 is : (15)

compute (15):

15 is factored to  3 . 5       (15) = (3-1) (5-1) = 8

The invertible elements are 1,2,4,7,8,11,13,14 , they build a group called Z*
15 with 8  

elements.

To compute the multiplicative inverse any element in Zm*, the extended gcd algorithm is 

used as was shown in lecture 02
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Addition: 

1.  (a   b)   F f  a, b  F    (closure)

2.  (a  b)  c = a  (b  c)   (associative)

3.  a  b = b  a (commutative)            

4.   0  in F (neutral element)                 

such that   a  0  = 0  a = a

5.   -a  in for any a in  F           (inverses Element)

such that  a  (-a) = (-a)  a = 0

Multiplication:

1. (a  b)  F - {0} (closure)

2. a  (b  c) = (a  b)  c  (associative)

3.  a  b = b  a (commutative) 

4.  1 in F                               (neutral element)
such that a  1 = 1  a = a 

5.  a-1 for any  a  (F - 0})   (inverses Element)
such that a  a-1 = a-1

 a = 1 for all a, b  (F - {0})

For any prime number p there is a field having  p elements.
Any non-zero element u from 1 to p-1 is invertible modulo p under multiplication.

(proof: As p is prime  gcd (p,u)=1,  thus every non-zero element has a multiplicative inverse )

Galois*-Fields (Finite Fields)  GF  <F,  ,  > *  (Évariste Galois, 1811 –1832) 

Set of elements  F with two operations: Addition  and Multiplikation where :

Addition / Multiplication:/

1.     a  0 = 0  a = 0

2.     a(b  c) = ab   a c (distributive)
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Évariste Galois 
October 25, 1811 – May 31, 1832  (lived 21 years!)

Académie des Sciences. First paper 17 years old

- Cauchy, Fourier Poisson rejected his work

- His friend contacted Gauss and Jacobi  after his death

(no response is known)

- His achievements became first known after his death in 1843.

Basic intensive reference on GF:

R. Lidl and H. Niederreiter

Finite Fields

(Encyclopedia of Mathematics and its Applications)

Cambridge University Press, Cambridge, 1996.

“finite fields”  are mostly known as „Galois Fields“  GF 
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Example:

GF(2) = < {0, 1}; ;  >

with  as  addition (mod 2)          (XOR) 

and   as multiplication (mod 2)  (AND).

 0 1

0 0 1

1 1 0

0 1

0 0 0

1 0 1



Galois-Field   GF(2)

!

Addition table Multiplication table
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Example:

GF(3) =  < {0, 1, 2}; ;  >

with  as  addition (mod 3)

and   as multiplication (mod 3)

 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

0 1 2

0 0 0 0

1 0 1 2

2 0 2 1



Galois-Field   GF(3)

!
!

Addition table Multiplication table
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Example: Arithmetic in Galois-Fields   GF(7)   <F,  ,  >

Example: Solve the set of linear equations in GF(7)

4 x1 +    x2 = 3 (1) 

2 x1 + 3 x2 = 4 (2)

Gaussian reduction 2(4 x1 + x2) = 3. 2 ( 4-1 = 2 in GF(7) )

x1 + 2 x2 = 6  x1 = 6 - 2 x2

replace in (2)  2(6 - 2 x2) + 3 x2 =  4   - x2 = - 8

 x2 =  1 and   x1 =  4


























4

3
   =   

x

x
  

3

1
    

2

4

2

1

 
 

  4 25  5 . 5  = 3 . 5  =  
  3

 5
  =  

10

 5
  =  

 2  -  12

4  - 9
  =  

3

1
    

2

4

3

1
    

4

3

  =  x 1-

1 

 
 

1  =  
3

3
  =  

10

 10
  =  

2  -  12

6  -  16
  =  

3

1
      

2

4

4

3
      

2

4

  =  x2

AS Matrix:
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Example: Solve the set of linear equations in GF(5)

4 x1 + x2 = 3 (1) 

2 x1 + 3 x2 = 4 (2)

Gaussian reduction 4(4 x1 + x2) = 3. 4 [ 4-1 = 4 in GF(5) ]

x1 + 4 x2 = 2  x1 = 2 - 4 x2

replace in (2)  2(2 - 4 x2) + 3 x2 =  4

 4 =  4 The two equations are linearly dependent !!!


























4

3
   =   

x

x
  

3

1
    

2

4

2

1

 
 

  !!!!  
  0

 0
    

10

 5
  =  

 2  -  12

4  - 9
  =  

3

1
    

2

4

3

1
    

4

3

  =  x1 

 
 

!!!! ? =  
0

0
    

10

 10
    

2  -  12

6  -  16
  =  

3

1
      

2

4

4

3
      

2

4

  =  x2 

Same example Arithmetic in Galois-Field   GF(5)  <F,  ,  >



AS Matrix:
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Order of a Group Elements
Let   < G,  >, the order of  is the smallest n such that:

  ... = e       or          n = e

n-times 

 : is the group operation,

e   : is the neutral element

Fundamental properties of elements orders in a group:

Definition: The order of a group G is the number of its elements = |G|

• (Lagrange Theorem): The order of any element in a finite group is finite and divides 

the group's order

If the order of  is  k then:     Ord (i ) = k / gcd (i,k)

Example: powers of  5 in  Z7   = GF(7) , 5
i : 51 52 53 54 55 56   =1

Elemets are        5      4     6     2     3    1   => order of 5 is 6
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A Cyclic Group

Fundamental properties :

• The number of elements with order k in a cyclic group  is = (k)

• Element’s order k always divides the group’s order n (Lagrange Th.)

A cyclic group: Is a group that can be generated by one of its elements.

In a multiplicative group G:

If  G has the order n , and the elements :   { 1 2 3 ........ n } build the whole 

group, then G is a cyclic group 

The element which can generate the whole group is called a primitive element.
(not all elements can generate the whole group!)

Example: powers of  5 in  Z7   = GF(7) 51 52 53 54 55 56=1

Elemets are      5      4     6     2     3    1
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Example: Order of Units in a Finite Field GF(7)

The invertible elements in  < Z7 ,  > are all non-zero elements for which

gcd (7, u) = 1

We have (7)=(7-1)= 6 such invertible elements. The elements are 1,2,3,4,5,6. These 

elements build a cyclic multiplicative group. GF(7) = Z7  as 7 is a prime number..

The multiplicative order of any element should be a divisor of the group’s oder =6 .

Therefore, possible orders are then 1,2,3, or 6

Computing the order for any element, is by exponentiating it to 1, 2, 3 or 6. 

The smallest exponent yielding 1 modulo 7 is the element’s order :

The order of 1 is 1  as    11 = 1 in Z7

The order of 2 is 3  as    23 = 8 = 1 in Z7

The order of 3 is 6  as    36 = 1  in Z7

The order of 4 is 3  as    43 = 1  in Z7

The order of 5 is 6  as    56 = 1  in Z7

The order of 6 is 2  as    62 = 1  in Z7
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Example: Multiplicative orders of all non-zero elements in GF(7)

Facts:

• The order of any element should be a divisor of  6, that is 1,2,3, or  6

• Number of elements from each order k is (k)

• The powers of the primitive elements 3 and 5 generate all non-zero elements of GF(7)

(as a Cyclic Group!)

Primitive elements (field generators)

Element 1 2 3 4 5 6

Computing

orders

1
1

= 1 2
1

= 2 3
1

= 3 4
1

= 4 5
1

= 5 6
1

= 6
2

2
= 4 3

2
= 2 4

2
= 2 5

2
= 4 6

2
= 1

2
3

= 1 3
3

= 6 4
3

= 1 5
3

= 6
3

4
= 4 5

4
= 2

3
5

= 5 5
5

= 3
3

6
= 1 5

6
= 1

order 1 3 6 3 6 2
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Example: Cyclic groups in GF(7)

Element 1 2 3 4 5 6

Computing

orders

1
1

= 1 2
1

= 2 3
1

= 3 4
1

= 4 5
1

= 5 6
1

= 6
2

2
= 4 3

2
= 2 4

2
= 2 5

2
= 4 6

2
= 1

2
3

= 1 3
3

= 6 4
3

= 1 5
3

= 6
3

4
= 4 5

4
= 2

3
5

= 5 5
5

= 3
3

6
= 1 5

6
= 1

possible cyclic subgroup orders :  1, 2, 3, 6

Order of any subgroup divides the group’s order :

Cyclic groups 

with order 6

Cyclic groups 

with order 3

Cyclic group

with order 2

Cyclic group

with order 1

Divisors of (7)= (7-1)

Each element of order  k  generates a cyclic group having k elements
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The  set of all units in Zm build a group under multiplication called  Z*
m

Fundamental properties of the Z*
m elements :

• The multiplicative order of any element in Z*
m divides (m)

• If the order of   is  k then    Ord (i ) = k / gcd (i,k)
special case: If the order of   is  k then the other elements with 

order  k are  (i ) for all i values for which gcd (i,k) =1

• Number of elements with order k is = (k)  if  and only if  Z*
m is a cyclic group

Summary: Order of elements in the Ring of Integers Modulo m:  Zm

The largest order of a unit in Z*
m is called  (m), known as Charmichael´s Function (m)
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Largest multiplicative order of elements in  Z*
m

Carmicheal´s Function
The largest possible multiplicative order of  an elements in Z*

m

is  computable by Carmichael´s function (m):

• (m) divides (m)

• for any u  Z*
m ,    u (m) = 1 in Zm , that is,  the  order of any unit divides (m)

(2)= 1,    (22) = 2,    (2e) = 2e-2 for  any  e  3 :

(pe)= (pe)  = (p - 1)pe-1 for  p  odd prim.

for m  = p1
e1   p2

e2 p3
e3 ...  pn

en

(m) =  lcm [ (p1
e1 ), (p2

e2 ),  … (pn
en ) ]

Carmicheal´s function:

lcm: least common multiple

hint

Notice: non units  (non-invertible 

elements) have no multiplicative order!

Mathematically said to have order= ∞
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Example: multiplicative order of units in Z*
19 = GF(19)

- All non-zero elements are units or  invertible as the modulus m=19 is a prime number

- The Multiplicative Order of  any unit  in Z19 is a divisor of (19)

- (19) = (19-1) = 18

we have 18 units ( 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)

- The multiplicative order of any unit is: 1, 2, 3, 6, 9, or  18 (i.e all divisors of 18)

from order 1 there are (1)= 1 units 

from order 2 there are (2)= 1 units

from order 3 there are (3)= 2 units

from order 6 there are (6)=(3-1)(2-1)= 2 units

from order 9 there are (9)= (32)= 32(1-1/3)= 6 units

from order 18 there are (18)= (2.32) = 18 (1-1/2)(1-1/3)= 6 units

- Find the order of the unit  = 2 :

21 = 2  1, 22 = 4  1, 23 = 8  1, 26 = 7  1, 29 = 18  1  218 = 1

the order of  2 is 18 ( 2 is a primitive element)

The other units with order 18 are:          21, 25 , 27 , 211, 213 , 217  

(1 ,5 ,7 ,11 ,13 ,17 are relatively prime to 18)

2 , 13, 14, 15 ,  3 , 10

Useful fact:

Ord (i ) = k / gcd (i,k)
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The fact that : Ord (i ) = k / gcd (i,k)            allows finding elements with other 

required orders:

- Ord (218 ) = 18/gcd (18,18) = 1    218 = 1 has order 1

- Ord (29 )  = 18/gcd (9,18)   = 2     29 = 18 has order 2

- Ord (26 )  = 18/gcd (6,18)   = 3     26 = 7 has order 3

the units with order 3 are:  71 , 72 

7 ,  11

- Ord (23 ) = 18/gcd (3,18)   = 6      23 = 8 has order 6

the units with order 6 are:  81 , 85 

8 , 12

- Ord (22 ) = 18/gcd (2,18)  = 9      22 = 4 has order 9

the units with order 9 are:   41 ,42 , 44 , 45 , 47 , 48

4 ,16 , 9, 17 , 6 , 5

Example cont.: multiplicative order of units in Z*
19
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Fermat and Euler’s Theorems

If gcd (a, m) = 1  

or for  any unit a in Zm or for any element in Z*
m , the following holds:

b (p-1) ≡  1 (mod p)

Proof: The order of any group’s element   Z*
m divides the group’s order  (m)

Important Notice: the modulus in the exponent is (m) (example)

• If m is a prime p then (m) = p-1        

for 1 < b < m

Fermat´s Theorem:   (Pierre de Fermat 1607- 1665)

• Primality test: If a number verifies Fermat theorem for some b then it is called a

pseudo prime to the base b

a         =  1 (in Zm )
(m)

Euler’s Theorem:  (Generalization of Fermat theorem):   Leonhard Euler: 1707 Basel; † 1783 in Sankt Petersburg

http://upload.wikimedia.org/wikipedia/commons/b/b9/Euler-10_Swiss_Franc_banknote_(front).jpg
http://upload.wikimedia.org/wikipedia/commons/f/f3/Pierre_de_Fermat.jpg

