Introduction to Cryptology

Mathematical Background

In Discrete Mathematics, Number Theory

Outlines
Euclidean Algorithm, Remainder

Lecture-3 Greatest Common Divisor (gcd)
Mathematical Background :
A quick approach to Group and Field Theory + Group Theory, Rings, Finite Fields (2
Element’s Order, Euler Theorem barts
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rime Numbers
part 3
« Prime Number Generation ‘
« Extension Fields part4
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Main Objectives for Crypto-Mappings/functions Targeted Crypto-Mappings
L ) ) Domain Range
Mapping function F : Bijective Function/Mapping :
lls a mapping which is:
Domain: input choices One-to-One AND Onto at the same time
Range : Output choices - Afunction F has an inverse function F-,
i ifandonlyif F is onetoone | Set: (1,2,3) #  Set(abo)

“One-To-One” functions:
No output from two different inputs

“Onto” functions:

Every output results from at least one input
(scanning the input space would scan the whole output space)

Permutation:
Abijective function from a set o itself is also called a

permutation (Domain = Range)
Crypto-Mappings use mostly pg_tnwlétions i Set: (1,2.3)
to keep data size unchanged.” ryewes
(domain space is the same as the range pace) 47 Oposs fzgelro""';?mns
Number of permutations: 3! =3 x (3-1) x (3-2) =6 - gg :Z ;gf
T 123 to 213
1 123 to 312
L 123 to 321
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Permutations Bounds

Engineering approach:
. i Output (R:
Mapping as a hardware-block; ~ ™P¥t(Pomain) utput (Range)
t-bits t-bits
A mapping function from t-bits to t-bits F
keeping the input space=output space
Data size unchanged! ;
i . L o =t 2 bits
Domain size = number of possible input combinations=n = 2 ™
t N
- Number of all possible “F” mappings = 212 ______
- Number of all possible invertible mappings ::9,,, 2t

Example: t=4, 4-bit to 4-bit mapping
Number of all possible mappings = 2 46 = 26¢ mappings
Number of possible invertible mappings = 24/ = 20.922.789.888.000

#bits required to select all possible invertible = log, 2/ = 44.25 44.25 bits
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Group Theory

Semigroup <S,*>
S < setofelements
* < operation
a*b=c ,with a,b,c e S (closure
a*(b*c)=(a*b)*c, where abc e S (associative)

Monoid <M, *>
<M,*>e <8, *>inadditionto a particular elemente

- e is called the neutral element of the monoid with the properties:
e*a=a‘e=a and a,ecM
- eis unique
- anelementa is invertible under * if thereis b e M such that:
a*h=bh*a=e
b=a is called the inverse of a under the Monoid operation * (the inverse b is unique)
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Group <G, *>
* Isa Monoid, with all element are invertible under the operation * of G, that is:
ifor any elementafrom G, there is ¢ « Gsuchthat: c*a=e, (c=a) !

+If a*b=b*a thenthe groupis called abelian (or a Commutative Group)

1! Groups are the most used algebraic structures in cryptography !!

Examples:
Z is a group under addition where e=0 . The additive inverse of anybe Z is -b which
also an elementin Z

Z is however a Monoid under multiplication where e=1, as not every elementhas a
multiplicative inverse (example there is no additive inverse for 2)

Page: 7

Ring <R, +,*>

<R, +>  <=>abelian group with e=0
<R,*>  <=> Monoid with e=1

The following holds:
a(b+c) = ab+ac
(b+cla = batca mitab, e R

The Ring is commutative if:
a*b=b"a

Example: Z4=1{0,12,...9} isthering of integers modulo 10 with
@ : Addition modulo 10
@® : Multiplication modulo 10
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Not all element in Z,, are invertible under multiplication

Example:
The Monoid Z,;, under ® (multiplication modulo 10)

4is notinvertible as:

wheree=1,asaOe=e®a=afora‘eeZ10 401=4
4©2=8
Invertible elementsin < Z4g, © > are: 4©3=2
4©4=6
1@1=1 => 11=1 4@5?0
3@7 31=7 4@6:4
9@9 91=9 4@7:8
7®3=1 => 71=3 4©8=2
409=6

=>4 has no inverse!

1,3,7 and9 are the only invertible elementsin Zm

Invertible elements are called units

Reminder: Units and the Modular Multiplicative Inversion
Definition: If an integer is invertible under multiplication modulo m, then it is called a unit
Example: 2x3=6=1 (mod 5)
says that : 3is the multiplicative inverse of 2 modulo 5 (2'=3)
or 2 is the multiplicative inverse of 3 modulo 5 (37=2)

Fundamental Theorem of units:
Aninteger u is a unitmodulo m (or u has a multiplicative inverse modulo m) iff (if and only if):

Computing the multiplicative inverse: Ifgcd (m,u)=1 then am+b.u =1
Taking the remainder modulo m of both sides: Ry, (am+bu)= R, (1)

Ryp(b.u)y=1
orR,b*Ru=1 => b)
or |u od m)
That is the multiplicative inverse of u mod mis the parameter b mod m in the extended Euclidian ged Algorithm.
Example: ged(13,2)=1=1.13 - 6.2  (Extended Euclidian Algorithm)

Ry3(1.13 - 6.2)=1
Ri3(6.2)=1 =>Ry3(2")=-6 or -6=-6+13=7 (mod 13)
Thatis 2'=-6or7 Check: 2+-6=-12=1 (mod13) or 2.7=14=1 (mod 13)
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The Group Z',in Z,, Invertible Elements and Euler Function ¢(m)
D€ pépe: € A . :
The (units) invertible elements_under multiplication in Z,, Form=P;"P;*P; ... P" where P;= P;for alli,jand P;is a prime
build a group under multiplication this group is called Z',, and e; is a positive integer for any i.
The order of Z',, is called Euler Function g{m) where:
Example:
1,3,7 and 9 are the only invertible elementsin Z;, dm)=m(1 - % ) (1 -% ). (1 -% )
1 2 t
==>7',={1,3,7,9} is amultiplicative group - \
| §(m) : is the number of non-zero integers less than m and relatively prime tom |
The neutral elementis: e =1 : . " . :
The inverse of any element in Z';is computable by the extended gcd algorithm : $(m) represents therefore the number of invertible elements in Z,, i
— - Example 1: ¢(15) = §(5.3) =15 (1-1/5) (1-1/3)= (5-1)(3-1) = 8
The number of elementsin Z', is called the order of the group Z', , the (This means that only 8 integers modulo 15 have a multiplicative inverse. Which?)
number is computable if m is possible to be factorized. Example2: $(45)= 4(5.37) = 5.32 (1-1/5) (1-13)= 24
This number is known as Euler Function ¢(m)
!I'No technique is known to compute ¢(m) without factoring m !!
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Example: Number of units

The invertible elements (units) in < Z45, @ > are all elements u for which
ged (15,u) =1

The number of units modulo 15 is : ¢(15)

compute ¢(15):
15isfactoredto 3.5 = ¢(15)=(3-1)(5-1)=8

The invertible elements are 1,2,4,7,8,11,13,14, they build a group called Z';; with 8
elements.

To compute the multiplicative inverse any elementin Z,*, the extended ged algorithm is
used as was shown in lecture 02

Galois*-Fields (Finite Fields) GF =<F,®, ® >* (variste Galois, 1811 -1832)

Setof elements F with two operations: Addition €@ and Multiplikation © where :

Addition: &
(a® b) e F fabeF (closure)

Multiplication: ®

1.(a®@b)eF-{0} (closure)
2.a@(b®c)=(a®@b) @ c (associative)
3

2. (a®b)® c=a® (b® c) (associative)
3 a@b=b®a (commutative) a®b=b®a (commutative)
4.30inF (neutral element) 4.3 1inF (neutral element)

suchthata @ 1=1@a=a
5.3 a'forany a< (F-0) (inverses Element)
suchthata @ a'=a" @ a=1foralla, b < (F-{0)

suchthat a®0 =0®a=a
3 -ainforanyain F (inverses Element)
suchthat a @ (-a) = (-a) @a=0

o

Addition / Multiplication:®/®

2. ab®c)=ab ® ac (distributive)

1. a®0=0@a=0

or any prime number p there is a field having p elements. :
| Any non-zero element u from 1 to p-1 i invertible modulo p under mulplication. 1
1 (proof: As p is prime ged (p,u)=1, thus every non-zero element has a multiplicative inverse ) |

Page: 13 Page: 14
Evariste Galois Galois-Field GF(2)
October 25, 1811 - May 31, 1832 (lived 21 years!)
Example:
GF(2)=<{0, 1} ®;® >
Académie des Sciences. First paper 17 years old " o
Cauchy, Fourier Poisson rejected his work Wm; % as adc::.“cl'.n (Tod 2) 42 ()‘(\?‘g)
His friend contacted Gauss and Jacobi after his death and ® as mutiplication (mod 2) (AND).
(no response is known)
His achievements became first known after his death in 1843.
finite fields” are mostly known as ,,Galois Fields“ GF Addition table Multiplication table
Basic intensive reference on GF: ®]0]1 ©0]1
0|01 0/0]0
R. Lidl and H. Niederreiter 11 1] 0 1101
Finite Fields \!
(Encyclopedia of Mathematics and its Applications) :i@ -
Cambridge University Press, Cambridge, 1996.
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Galois-Field GF(3) Example: Arithmetic in Galois-Fields GF(7) <> <F.®,® >
Example: Solve the set of linear equations in GF(7
Example: 4xi+ x=3 (1)
GF(3) = <{0,1, 2y @, ® > 2x,+3x,24  (2)
with @ as addition (mod 3) Gaussian reduction 2(4x,+x;)=3.2 (41=2inGF(7))
and @ as multiplication (mod 3) X +2%,=6 > X =6-2x,
replacein (2) - 2(6-2x;)+3x,= 4 —>-x,=-8
Addition table Multiplication table - X=1and x,=4
i @|o|1]2 ®|o] 1] 2 AS Wati ‘Sj
i o]ol1]2 | 0loloalo Al ol A0 5 5 e,
111]2]|0 | 1001 2 ‘41(12-2) 10 i
EEEN ER IR
3 3 2]o0f2] 1 = 4 9 i
i '\\ | N 2 3J1x 4 X:M:M:Q:ézl |
: : T 1 (@2-2 10 3
2 1
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Same example Arithmetic in Galois-Field GF(5) <<F. &, ® >

Example: Solve the set of linear equations in GF(5

4x,+x,=3
2x,+3%,=4 (2
Gaussian reduction 4(4x +x)=3.4 [41=4inGF(5)]

X +t4x,=2 — X =2-4%,

replacein (2) > 2(2-4x,)+3x,= 4
— 4= 4 Thetwo equations are linearly dependent !!!

AS Matrix:

R
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Order of a Group Elements

Leta € <G, © >, the order of & is the smallest n such that:

@© :is the group operation,

or e :is the neutral element

iExamgIe: powersof 5in Z; =GF(7) 5' : 5' 52 58 54 55 56 =1
: Elemets are 5 4 6 2 3 1 =>orderof5is6

Fundamental properties of elements orders in a group:
Definition: The order of a group G is the number of its elements = |G|

+ (Lagrange Theorem): The order of any element in a finite group is finite and divides
the group's order

If the orderof a is k then: | Ord (') = k / ged (i,k)
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A Cyclic Group
A cyclic group: Is a group that can be generated by one of its elements.
In a multiplicative group G:

If o € Ghas the ordern , and the elements: {a' o? o
group, then G is a cyclic group

........ a" } build the whole

The element which can generate the whole group is called a primitive element.
(not all elements can generate the whole group!)

Example: powersof 5in Z; =GF(7) 5! 52 5% 5% 55 56=1

Elemetsare 5 4 6 2 3 1

Fundamental propertie
+ The number of elements with order k in a cyclic group is = ¢(k) :

+ Element’s order k always divides the group’s order n (Lagrange Th.)
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Example: Order of Units in a Finite Field GF(7)
The invertible elementsin < Z; © > are all non-zero elements for which
ged (7,u)=1
We have ¢(7)=(7-1)= 6 such invertible elements. The elements are 1,2,3,4,5,6. These
elements build a cyclic multiplicative group. GF(7) = Z; as 7 is a prime number..

The multiplicative order of any element should be a divisor of the group’s oder=6 .
Therefore, possible orders are then 1,2,3, or 6

Computing the order for any element, is by exponentiating itto 1, 2, 3 or 6.
The smallest exponent yielding 1 modulo 7 is the element's order :
Theorderof1is 1 as 1'=1inZ;

Theorderof2is 3 as 22=8=1inZ;

Theorderof 3is 6 as 3¢=1inZ;

Theorderof4is3 as 4°=1inZ;

Theorderof5is6 as 5%=1 inZ;

Theorderof6is2 as 62=1inZ;
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Example: Multiplicative orders of all non-zero elements in GF(7)

Primitive elements (field generators)

Element 4 6
4=4 6=6
Computing :,fﬁ 6=1
orders —» P
I ! 1
order 3 6 2

Facts:

+ The order of any element should be a divisor of 6, thatis 1,2,3, or 6

+ Number of elements from each order k is ¢(k)

+ The powers of the primitive elements 3 and 5 generate all non-zero elements of GF(7)
(as a Cyclic Group!)
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Example: Cyclic groups in GF(7)
Each element of order k generates a cyclic group having k elements

Element | 1

6
GZ =6
Computing H 6 : 1
orders  — | i
: ;
Cyclicgroup  Cyclic groups. Cyclic groups Cydlic group
with order 1 with order 3 with order 6 with order 2

possible cyclic subgroup orders : 1,2,3,6 “

Order of any subgroup divides the group's order :
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Summary: Order of elements in the Ring of Integers Modulo m: Z,,

The set of all units in Zm build a group under multiplication called Z*"1

Fundamental properties of the z‘m elements :
+ The multiplicative order of any elementin Z’m divides ¢(m)
+Ifthe order of « is k then Ord (o) =k /gcd (i,k)

special case: If the order of o is k then the other elements with
order k are (o) foralli values for which gcd (ik) =1

+ Number of elements with order k is = ¢(k) if_and only if Z’m is a cyclic group

The largest order of a unit in Z*m is called A(m), known as Charmichael’s Function A(m)
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Largest multiplicative order of elements in Z°,

Carmicheal’s Function
The largest possible multiplicative order of an elementsin Z°,
is computable by Carmichael’s function A(m):

+ A(m)divides ¢(m)

« foranyueZ,, uM =1inZ, ,thatis, the orderof any unit divides A(m)

Carmicheal's function:

M2=1, M2)=2, A(2)=22 for any e23: Notice: non units-(non-invertible
elements) have no multiplicative order!

AMpe)=@(p°) = (p-1)p*! for p odd prim. Mathematically said to have order=

form =pet p,? Pyt . Py

Am)= lem [Ap!), ARz2), - Mpe™) ] «

Iem: least common multiple

Example: multiplicative order of units in Z',, = GF(19)
- All non-zero elements are units or invertible as the modulus m=19 is a prime number
- The Multiplicative Order of any unit o in Zyg is a divisor of §(19)
-$(19) = (19-1) =18

we have 18 units (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)

- The multiplicative order of any unitis: 1,2, 3,6,9, or 18 (i.e all divisors of 18)
from order 1 there are ¢(1)=1 units
from order 2 there are ¢(2)= 1 units

-1)(2-1)= 2 units
(32)= 3%(1-113)= 6 units
from order 18 there are ¢(18)= $(2.3%) = 18 (1-1/2)(1-1/3)= 6 units

- Find the order of the unito.=2 :
212221, 2=421, P=8=1, B=7=1,2=18=1= 28=1
the order of 2is 18 ( 2 is a primitive element)

The other units with order 18 are: 2,5,7,2M 28,27
(1,5,7,1,13 17 are relatively prime to18) | | | | |
2,13,14,15, 3,10
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Example cont.: multiplicative order of units in Z',,

The factthat: | Ord

1 ged (i,k) allows finding elements with other
required orders:
- Ord(2'®)=18/gcd (18,18) =1 = 2'® =1 has order 1
- Ord(2°) =18/gcd (9,18) =2 = 2°=18 has order 2
- Ord(2°) =18/gcd (6,18) =3 = 2°=7 has order 3
the units with order 3 are: 7', 72
7,1

- Ord(2°)=18/gcd (3,18) =6 = 2°=8 has order 6
the units with order 6 are: 8', 8°

8,12
- Ord(22)=18/gcd (2,18) =9 = 2?=4has order 9
the units with order 9 are: 4',42,4*, 45, 47, 4
4,16,9,17,6,5
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Fermat and Euler’s Theorems

Fermat’s Theorem: (Pierre de Fermat 1607- 1665)

+ If mis a prime p then ¢(m) = p-1 = b®) =1 (modp)
for 1<b<m

* Primality test: If a number verifies Fermat theorem for some b then it is called a
pseudo prime to the base b

Ifged (a,m) =1
orfor anyunit ainZy, orfor any elementin 2", , the following holds:
b(m) )

a =1 (inZy) %

Proof: The order of any group's element o « Z';, divides the group's order ¢(m)
Important Notice: the modulus in the exponentis _¢(m) (example! {
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