Introduction to Cryptology

Lecture-3
Mathematical Background:
A quick approach to Group and Field Theory

15.03.2023, v53

Mathematical Background
 In Discrete Mathematics, Number Theory

Outlines

Euclidean Algorithm, Remainder
Greatest Common Divisor (gcd)

- Group Theory, Rings, Finite Fields Element's Order, Euler Theorem
- Prime Numbers
- Prime Number Generation
- Extension Fields

Group <G, *>

- Is a Monoid, with all element are invertible under the operation * of G , that is:
for any element a from G, there is $c \in G$ such that: $c * a=e, \quad\left(c=a a^{-1}\right)$
- If $\quad a^{*} b=b * a$ then the group is called abelian (or a Commutative Group)

" Groups are the most used algebraic structures in cryptography!!

Examples:
\mathbf{Z} is a group under addition where $e=0$. The additive inverse of any $b \in \mathbf{Z}$ is $-b$ which also an element in \mathbf{Z}
\mathbf{Z} is however a Monoid under multiplication where $\mathrm{e}=1$, as not every element has a multiplicative inverse (example there is no additive inverse for 2)

Not all element in Z_{m} are invertible under multiplication
Example:
The Monoid \mathbf{Z}_{10} under \odot (multiplication modulo 10)
where $\mathrm{e}=1$, as $\mathrm{a} \odot \mathrm{e}=\mathrm{e} \odot \mathrm{a}=\mathrm{a}$ for $\mathrm{a}, \mathrm{e} \in \mathbf{Z}_{10}$
Invertible elements in $\left\langle\mathbf{Z}_{10}, \odot>\right.$ are:
$1 \odot 1=1 \Rightarrow 1^{-1}=1$
$3 \odot 7=1 \Rightarrow 3^{-1}=7$
$9 \odot 9=1 \Rightarrow 9^{-1}=9$
$7 \odot 3=1 \Rightarrow 7^{-1}=3$
$1,3,7$ and 9 are the only invertible elements in \mathbf{Z}_{10}

Invertible elements are called units

Ring <R, +, *>

$<R,+>$ <=> abelian group with $e=0$
$<R, *>$ Monoid with $e=1$
The following holds:
$a(b+c)=a b+a c$
$(b+c) a=b a+c a \quad$ mit $a, b, \in R$
The Ring is commutative if:

Example: $\mathbf{Z}_{10}=\{0,1,2, \ldots . .9\}$ is the ring of integers modulo 10 with
\oplus : Addition modulo 10
\odot : Multiplication modulo 10

$$
\begin{aligned}
& \text { Reminder: Units and the Modular Multiplicative Inversion } \\
& \text { Definition: If an integer is invertible under multiplication modulo } m \text {, then it is called a unit } \\
& \text { Example: } 2 \times 3=6=1(\bmod 5) \\
& \text { says that : } \quad 3 \text { is the multiplicative inverse of } 2 \text { modulo } 5 \quad\left(2^{1-1}=3\right) \\
& \text { or } 2 \text { is the multiplicative inverse of } 3 \text { modulo } 5 \quad\left(3^{-1}=2\right) \\
& \text { Fundamental Theorem of units: } \\
& \text { An integer } u \text { is a unit modulo } m \text { (or } u \text { has a multiplicative inverse modulo } m \text {) iff (if and only if): } \\
& \operatorname{gcd}(\mathrm{m}, \mathrm{u})=1 \\
& \text { Computing the multiplicative inverse: If } \operatorname{gcd}(m, u)=1 \text { then } a . m+b . u=1 \\
& \text { Taking the remainder modulo } \mathrm{m} \text { of both sides: } R_{m}(\mathrm{a} \mathrm{~m}+\mathrm{bu})=R_{m}(1) \\
& \begin{aligned}
& R_{m}(\mathrm{~b} \cdot \mathrm{u})=1 \\
& \text { or } \mathrm{R}_{\mathrm{m}} \mathrm{~b} \cdot \mathrm{R}_{m} \mathrm{u}=1 \Rightarrow \\
& \\
& \text { or } \\
& \cline { 3 - 3 } u^{-1}=R_{m}(\mathrm{~b}) \\
& u^{-1}=b(\bmod m)
\end{aligned} \\
& \text { or } u^{-1}=b(\bmod m) \\
& \text { That is the multiplicative inverse of } u \bmod m \text { is the parameter } b \bmod m \text { in the extended Euclidian gcd Algorithm. } \\
& \text { Example: } \quad \operatorname{gcd}(13,2)=1=1.13-6.2 \quad \text { (Extended Euclidian Algorithm) } \\
& R_{13}(1.13-6.2)=1 \\
& R_{13}(-6.2)=1 \Rightarrow R_{13}\left(2^{-1}\right)=-6 \text { or }-6=-6+13=7(\bmod 13) \\
& \text { That is } 2^{-1}=-6 \text { or } 7 \quad \text { Check: } 2 \cdot-6=-12=1(\bmod 13) \text { or } 2.7=14=1(\bmod 13)
\end{aligned}
$$

The Group $\mathbf{Z}_{\mathrm{m}}^{*}$ in \mathbf{Z}_{m}
The (units) invertible elements under multiplication in Z_{m} build a group under multiplication this group is called Z_{m}^{m}

Example:
$1,3,7$ and 9 are the only invertible elements in Z_{10}
$==>Z_{10}^{*}=\{1,3,7,9\}$ is a multiplicative group
The neutral element is: $e=$
The inverse of any element in Z_{10}^{*} is computable by the extended gcd algorithm
The number of elements in $\mathbf{Z}_{\mathrm{m}}^{*}$ is called the order of the group $\mathbf{Z}_{\mathrm{m}}^{*}$, the number is computable if m is possible to be factorized.
This number is known as Euler Function $\phi(\mathrm{m})$

Invertible Elements and Euler Function $\phi(m)$

For $\mathrm{m}=P_{1}^{\mathrm{e}_{1}} P_{2}^{\mathrm{e}_{2}} P_{3}^{\mathrm{e}_{3}} \ldots P_{t}^{\mathrm{e}_{t}}$ where $P_{i} \neq P_{i}$ for all i, j and P_{i} is a prime
and e_{i} is a positive integer for any i.
The order of Z_{m}^{*} is called Euler Function $\phi(m)$ where:

$$
\phi(m)=m\left(1-\frac{1}{P_{1}}\right)\left(1-\frac{1}{P_{2}}\right) \ldots\left(1-\frac{1}{P_{t}}\right)
$$

$\phi(\mathrm{m})$: is the number of non-zero integers less than m and relatively prime to m $\phi(m)$ represents therefore the number of invertible elements in Z_{m}.

Example 1: $\phi(15)=\phi(5.3)=15(1-1 / 5)(1-1 / 3)=(5-1)(3-1)=8$
(This means that only 8 integers modulo 15 have a multiplicative inverse. Which?)
Example 2: $\phi(45)=\phi\left(5.3^{2}\right)=5.3^{2}(1-1 / 5)(1-1 / 3)=24$
!! No technique is known to compute $\phi(\mathrm{m})$ without factoring m !!

Example: Number of units

The invertible elements (units) in $\left\langle\mathbf{Z}_{\mathbf{1 5}}, \odot>\right.$ are all elements u for which $\operatorname{gcd}(15, u)=1$

The number of units modulo 15 is : $\phi(15)$

compute $\phi(15)$:

15 is factored to $3.5 \Rightarrow \phi(15)=(3-1)(5-1)=8$
The invertible elements are $1,2,4,7,8,11,13,14$, they build a group called Z_{15} with 8 elements.

To compute the multiplicative inverse any element in $Z_{m}{ }^{*}$, the extended gcd algorithm is

 used as was shown in lecture 02Galois*-Fields (Finite Fields) GF $\equiv\left\langle\mathrm{F}, \oplus, \bigcirc>^{*}\right.$ (Evariste Galois, 1811-1832)
Set of elements \mathbf{F} with two operations:Addition \oplus and Multiplikation \bigcirc where

Addition: \oplus	Multiplication:-
1. $(\mathrm{a} \oplus \mathrm{b}) \in \mathrm{Ffa} \mathrm{f} \in \mathrm{F} \quad$ (closure)	1. (a $\odot \mathrm{b}) \in \mathrm{F}$ - $\{0\} \quad$ (closure)
2. $(\mathrm{a} \oplus \mathrm{b}) \oplus \mathrm{c}=\mathrm{a} \oplus(\mathrm{b} \oplus \mathrm{c})$ (associative)	2. $\mathrm{a} \odot(\mathrm{b} \odot \mathrm{c})=(\mathrm{a} \odot \mathrm{b}) \odot \mathrm{c}$ (associative)
3. $\mathrm{a} \oplus \mathrm{b}=\mathrm{b} \oplus \mathrm{a}$ ($\mathrm{a}^{\text {ammutative) }}$	3. $\mathrm{a} \odot \mathrm{b}=\mathrm{b} \odot \mathrm{a} \quad$ (commutative)
4. $\exists \mathrm{O} \mathrm{inF} \quad$ (neutral element)	4. $\exists 1 \mathrm{in} \mathrm{F}$ (neutral element)
such that $\mathrm{a} \oplus 0=0 \oplus \mathrm{a}=\mathrm{a}$	such thata $\odot 1=1 \odot a=a$
5. \exists-a in for any a in $F \quad$ (inverses Element) such that $a \oplus(-a)=(-a) \oplus a=0$	$5 . \exists \mathrm{a}^{-1}$ for any $\left.\mathrm{a} \in(\mathrm{F}-0\}\right)$ (inverses Element) such that $a \odot a^{-1}=a^{-1} \odot a=1$ for all $a, b \in(F-\{0\})$
Addition/Multiplication: \oplus / \bigcirc	
2. $\mathrm{a}(\mathrm{b} \oplus \mathrm{c})=\mathrm{ab} \oplus \mathrm{ac}$ (distributive)	
For any prime number p there is a field having p elements. ' Any non-zero element u from 1 to p-1 is inverible modulo p under multipication. (proof: As pis prime gcd ($p, 4$) $=1$, thus every non-zero element has a muttipicative inverse)	

Évariste Galois

October 25, 1811 - May 31, 1832 (lived 21 years!)
Académie des Sciences. First paper 17 years old
Cauchy, Fourier Poisson rejected his work
His friend contacted Gauss and Jacobi after his death
His friend contacted Gauss and Jacobi after his death
(no response is known)
His achievements became first known after his death in
"finite fields" are mostly known as "Galois Fields" GF Basic intensive reference on GF:
R. Lidl and H. Niederreiter

Finite Fields
(Encyclopedia of Mathematics and its Applications)
Cambridge University Press, Cambridge, 1996.

Galois-Field GF(2)

Example:

$\mathrm{GF}(2)=\langle\{0,1\} ; \oplus ; \odot>$
with \oplus as addition $(\bmod 2) \quad$ (XOR)
and \odot as multiplication (mod 2) (AND

Addition table

\oplus	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

$=0$

Multiplication table

\odot	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
		-

Galois-Field GF(3)

Example:

GF(3) $=\langle\{0,1,2\} ; \oplus ; \odot\rangle$
with \oplus as addition $(\bmod 3)$
and \odot as multiplication $(\bmod 3)$

Multiplication table

\odot	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$

Example: Arithmetic in Galois-Fields $\mathrm{GF}(7) \Leftrightarrow\langle\mathrm{F}, \oplus, \bigcirc\rangle$

Same example Arithmetic in Galois-Field $\mathrm{GF}(5) \Leftrightarrow\langle\mathrm{F}, \oplus, \bigcirc\rangle$
Example: Solve the set of linear equations in $\mathbf{G F}(5)$
$\begin{array}{lll}4 x_{1}+x_{2}=3 & \text { (1) } \\ 2 x_{1}+3 x_{2}=4 & \text { (2) } & \\ \text { Gaussian reduction } & 4\left(4 x_{1}+x_{2}\right)=3.4 & {\left[4^{-1}=4 \text { in } G F(5)\right]} \\ & x_{1}+4 x_{2}=2 \rightarrow & x_{1}=2-4 x_{2}\end{array}$
replace in (2) $\rightarrow 2\left(2-4 x_{2}\right)+3 x_{2}=4$
$\rightarrow 4=4$ The two equations are linearly dependent!!!

Order of a Group Elements

Example: powers of 5 in $Z_{7}=\mathbf{G F}(7) 5^{1}: \begin{array}{llllll}5^{1} & 5^{2} & 5^{3} & 5^{4} & 5^{5} & 5^{6}=1\end{array}$ $\begin{array}{lllllll}\text { Elemets are } & 5 & 4 & 6 & 2 & 3 & 1 \Rightarrow \text { order of } 5 \text { is } 6\end{array}$

Fundamental properties of elements orders in a group:
Definition: The order of a group G is the number of its elements $=\mid G$

- (Lagrange Theorem): The order of any element in a finite group is finite and divides the group's order

If the order of α is k then: $\operatorname{Ord}\left(\alpha^{i}\right)=k / \operatorname{gcd}(i, k)$

A Cyclic Group

A cyclic group: Is a group that can be generated by one of its elements.

n a multiplicative group \mathbf{G} :

If $\alpha \in G$ has the ordern, and the elements : $\left\{\begin{array}{lllll}\alpha^{1} & \alpha^{2} & \alpha^{3} & \ldots ~ & \alpha^{n}\end{array}\right\}$ build the whole group, then G is a cyclic group

The element which can generate the whole group is called a primitive element. (not all elements can generate the whole group!)
Example: powers of 5 in $\mathbf{Z}_{7}=\mathbf{G F}(7) \quad 5^{1} \quad 5^{2} \quad 5^{3} \quad 5^{4} \quad 5^{5} \quad 5^{6}=1$
$\begin{array}{lllllll}\text { Elemets are } & 5 & 4 & 6 & 2 & 3 & 1\end{array}$

Fundamental properties

- The number of elements with order k in a cyclic group is $=\phi(\mathbf{k})$
- Element's order k always divides the group's order n (Lagrange Th.)

Example: Order of Units in a Finite Field GF(7)
The invertible elements in $\left\langle Z_{7}, \odot>\right.$ are all non-zero elements for which $\operatorname{gcd}(7, \mathrm{u})=1$
We have $\phi(7)=(7-1)=6$ such invertible elements. The elements are $1,2,3,4,5,6$. These elements build a cyclic multiplicative group. $\mathrm{GF}(7)=\mathrm{Z}_{7}$ as 7 is a prime number.

The multiplicative order of any element should be a divisor of the group's oder $=6$. Therefore, possible orders are then $1,2,3$ or 6

Computing the order for any element, is by exponentiating it to $1,2,3$ or 6
The smallest exponent yielding 1 modulo 7 is the element's order:
The order of 1 is 1 as $1^{1}=1$ in Z_{7}
The order of 2 is 3 as $2^{3}=8=1$ in Z
The order of 3 is 6 as $3^{6}=1$ in Z
The order of 4 is 3 as $4^{3}=1$ in Z_{7}
The order of 5 is 6 as $5^{6}=1$ in Z_{7}
The order of 6 is 2 as $6^{2}=1$ in Z_{7}

Example: Multiplicative orders of all non-zero elements in GF(7)

Facts:

- The order of any element should be a divisor of 6 , that is $1,2,3$, or 6
- Number of elements from each order k is $\phi(\mathrm{k})$
- The powers of the primitive elements 3 and 5 generate all non-zero elements of $\mathrm{GF}(7)$ (as a Cyclic Group!)

Example: Cyclic groups in GF(7)
Each element of order k generates a cyclic group having k elements

Summary: Order of elements in the Ring of Integers Modulo m: \mathbf{Z}_{m}

The set of all units in \mathbf{Z}_{m} build a group under multiplication called $\mathbf{Z}_{\mathrm{m}}^{*}$

Fundamental properties of the $Z_{\underline{m}}^{*}$ elements :

- The multiplicative order of any element in Z_{m}^{*} divides $\phi(m)$

If the order of α is k then $\operatorname{Ord}\left(\alpha^{i}\right)=k / \operatorname{gcd}(i, k)$ special case: If the order of α is k then the other elements with order k are (α^{i}) for all i values for which $\operatorname{gcd}(\mathrm{i}, \mathrm{k})=1$

Number of elements with order k is $=\phi(\mathrm{k})$ if and only if Z_{m}^{*} is a cyclic group
The largest order of a unit in $\mathbf{Z}_{\mathrm{m}}^{*}$ is called $\lambda(\mathrm{m})$, known as Charmichael's Function $\lambda(\mathrm{m})$

Largest multiplicative order of elements in \mathbf{Z}_{m}^{*}

 Carmicheal's FunctionThe largest possible multiplicative order of an elements in $\mathbf{Z}_{\mathrm{m}}^{*}$ is computable by Carmichael's function $\lambda(\mathrm{m})$:

- $\lambda(m)$ divides $\phi(m)$
- for any $u \in \mathbf{Z}_{m}^{*}, u^{\lambda(m)}=1$ in \mathbf{Z}_{m}, that is, the order of any unit divides $\lambda(m)$ Carmicheal's function:

$\lambda(2)=1, \quad \lambda\left(2^{2}\right)=2, \quad \lambda\left(2^{\circ}\right)=2^{0 .-2}$ for any $\mathrm{e} \geq 3$: $\lambda\left(p^{0}\right)=\Phi\left(p^{\mathrm{e}}\right)=(\mathrm{p}-1) \mathrm{p}^{\mathrm{e}-1}$ for p odd prim.	Notice: non units (non-invertible elements) have no multiplicative order! Mathematically said to have order= ∞
for $m=p_{1}{ }^{01} p_{2}{ }^{02} p_{3}{ }^{\text {e3 }} \ldots \ldots p_{n}{ }^{\text {en }}$	hint
$\begin{aligned} & \lambda(m)=\operatorname{lcm}\left[\lambda\left(p_{0}{ }^{19}\right), \lambda\left(\mathrm{p}^{02}\right), \ldots \lambda\left(\mathrm{p}^{\mathrm{en}}\right)\right] \ldots \ldots \\ & \text { Icm: least common multiple } \end{aligned}$	$\rightarrow \operatorname{cm}(a, b)=\frac{a \cdot b}{\operatorname{gcd}(a, b)}$

Example: multiplicative order of units in $Z_{19}^{*}=\mathrm{GF}(19)$

- All non-zero elements are units or invertible as the modulus $\mathrm{m}=19$ is a prime number
- The Multiplicative Order of any unit α in \mathbf{Z}_{19} is a divisor of ϕ (19)
- The Multiplicative
$-\phi(19)=(19-1)=18$
we have 18 units ($1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18$)
- The multiplicative order of any unit is: $1,2,3,6,9$, or 18 (i.e all divisors of 18)
from order 1 there are $\phi(1)=1$ units
from order 2 there are $\phi(2)=1$ units
from order 3 there are $\phi(3)=2$ units
from order 6 there are $\phi(6)=(3-1)(2-1)=2$ units
from order 9 there are $\phi(9)=\phi\left(3^{2}\right)=3^{2}(1-1 / 3)=6$ units
from order 18 there are $\phi(18)=\phi\left(2.3^{2}\right)=18(1-1 / 2)(1-1 / 3)=6$ units
Find the order of the unit $\alpha=2$
$2^{1}=2 \neq 1, \quad 2^{2}=4 \neq 1, \quad 2^{3}=8 \neq 1, \quad 2^{6}=7 \neq 1,2^{9}=18 \neq 1 \Rightarrow 2^{18}=1$
the order of 2 is 18 (2 is a primitive element)
The other units with order 18 are: $\quad 2^{1}, 2^{5}, 2^{7}, 2^{11}, 2^{13}, 2^{17}$
($1,5,7,11,13,17$ are ereatively prime to 18) $\downarrow \downarrow$

```
Example cont.: multiplicative order of units in }\mp@subsup{Z}{19}{*
The fact that: Ord ( }\mp@subsup{\alpha}{}{i})=k/\operatorname{gcd}(\textrm{i},\textrm{k}
allows finding elements with other
required orders:
- Ord (2 }\mp@subsup{2}{}{18})=18/gcd (18,18)=1=>\mp@subsup{2}{}{18}=1\mathrm{ has order 1
- Ord (29})=18/gcd (9,18)=2=>\mp@subsup{2}{}{9}=18\mathrm{ has order 2
    Ord (\mp@subsup{2}{}{6})=18/gcd (6,18) = 3 m 26=7 has order 3
    the units with order 3 are: 71, 72
- Ord (2 }\mp@subsup{2}{}{3})=18/gcd (3,18)=6 => 2 2 = 8 has order 6
    the units with order 6 are: 81, 85
- Ord (22})=18/gcd (2,18)=9 => 2 2 = 4 has order 9
    the units with order 9 are: 4
        4,16,9,17,6,5
```


Fermat and Euler's Theorems

Fermat's Theorem: (Pierre de Fermat 1607-1665)

- If m is a prime p then $\phi(\mathrm{m})=\mathrm{p}-1 \quad \Rightarrow \quad \boldsymbol{b}^{(p-1)} \equiv 1(\bmod \mathrm{p})$
for $1 \leq \mathrm{b}<\mathrm{m}$
- Primality test: If a number verifies Fermat theorem for some b then it is called a
pseudo prime to the base b

