Introduction to Cryptology

Lecture-3 Mathematical Background : A quick approach to Group and Field Theory

15.03.2023, v53

Group <G, *>

- Is a Monoid, with all element are invertible under the operation * of G, that is: for any element **a** from G, there is $c \in G$ such that : c * a = e, $(c = a^{-1})$
- If a * b = b * a then the group is called abelian (or a Commutative Group)
- !! Groups are the most used algebraic structures in cryptography !!

Z is however a Monoid under multiplication where e=1, as not every element has a multiplicative inverse (example there is no additive inverse for 2)

Page : 7

The Monoid Z ₁₀ under ⊙ (multiplication modulo 10)	
	4 is not invertible as
where e=1, as a \odot e = e \odot a = a for a, e $\in \mathbb{Z}_{10}$	4 ⊙ 1 = 4
	4 👁 2 = 8
Invertible elements in < Z ₁₀ , ⊙ > are:	4 💿 3 = 2
	4 👁 4 = 6
1⊙1=1 => 1 ⁻¹ =1	4 ⊙ 5 = 0
$3 \odot 7 = 1 \Rightarrow 3^{-1} = 7$	4 💿 6 = 4
$9 \odot 9 = 1 \Rightarrow 9^{-1} = 9$	4 💿 7 = 8
$7 \odot 3 = 1 \implies 7^{-1} = 3$	4 💿 8 = 2
103-1-21-5	4 💿 9 = 6
1, 3, 7 and 9 are the <u>only</u> invertible elements in Z ₁₀	=> 4 has no inverse
Invertible elements are called unit	s

Reminder: Units and the Modular Multiplicative Inversion Definition: If an integer is invertible under multiplication modulo m, then it is called a unit Example: 2 x 3 - 6 = 1 (mod 5) says that : 3 is the multiplicative inverse of 2 modulo 5 (2 ¹⁻²) or 2 is the multiplicative inverse of 3 modulo 5 (3 ¹⁻²)	
Fundamental Theorem of units: An integer u is a unit modulo m (or u has a <i>multiplicative inverse</i> modulo m) iff (if and only if): gcd (m, u) = 1	
$\begin{array}{l} \hline \textbf{Computing the multiplicative inverse:} \ \text{if gcd} \ (m, u) = 1 \ \text{then} \textbf{a.m} + \textbf{b.u} = 1 \\ \hline \text{Taking the remainder modulo m of both sides:} R_m (a m + b u) = R_m (1) \\ R_m (b \cdot u) = 1 \\ \text{or } R_m \mathbf{b} \cdot \mathbf{R}_m u = 1 \\ \text{or } R_m \mathbf{b} \cdot \mathbf{R}_m u = 1 \\ \text{or } r \\ m t = b \ (mod \ m) \end{array}$	
That is the multiplicative inverse of u mod m is the parameter b mod m in the extended Euclidian gcd Algorithm.	
Example: gcd (13, 2) = 1 = 1.13 - 6.2 (Extended Euclidian Algorithm) $R_{13}(1.13 - 6.2) = 1$ $R_{13}(2^{-1}) = -6$ or $-6 = -6 + 13 = 7 \pmod{13}$ Thatis $2^{-1} = -6$ or 7 Check: $2^{-6} = -12 = 1 \pmod{13}$ or $2.7 = 14 = 1 \pmod{13}$	

