Introduction to Cryptology

Lecture-02

Mathematical Background for Cryptography: Modular Arithmetic and gcd

07.03.2023, v4

Mathematical Backgrou Number Theory, Groups, Rings and Fi	
Outlines	
Euclidean Algorithm, Remainder Greatest Common Divisor (gcd)	part 1
 Group Theory, Rings, Finite Fields Element's Order, Euler Theorem 	part 2
Prime Numbers Prime Number Generation	part 3
Extension Fields	part 4
	Page

Deepest thanks

To James Massey (ETH Zürich). for allowing me to use his lecture slides in 1987.

Many slides, especially those on mathematical fundamentals were inspired or used in modified forms in whole or in part from Jim Massey's lecture slides.

I had the pleasure and luck to be first introduced to this topic by Jim Massey at the ETH Zurich in 1985

Page : 1

James Massey is a well known coding theorist and cryptographer Having outstanding and major fundamental contributions in the last 60 years in the theory and technology of coding and cryptography.

Page: 3

 Mathematical Background: in Number Theory

 In many modem cryptographic systems, data blocks are represented as integers. Therefore integer algebra need to be introduced in the form of number theory:

 Number sets of interest in cryptography:

 • Natural numbers
 N = 0 1 2 3

 • Integers set
 Z = -3 -2 -1 0 1 2 3

 • For any integer n $\in \mathbb{N}$ and n >1:

 $n = \prod_{i=1}^{r} p_i$ where all p_i 's are prime factors of n r is the number of prime factors of n.

 Modern cryptosystems deploy intensively the above two number sets N and Z in representing data blocks.

	MU München (1913-2000). Mathematician, Cryptographer) or n ₁ and n ₂ being even or odd integers:
111010 010 4 00303 1	
1. n_1 and n_2 are even	$en: \to \ gcd \ (n_1 \ , \ n_2) \ = \ 2 \ . \ gcd \ (\ n_1/2 \ , \ n_2/2 \)$
2. n_1 even, n_2 odd : 3. n_1 odd, n_2 even :	$\begin{array}{rcl} \rightarrow & gcd \left(n_1,n_2\right) &=& gcd & \left(n_1/2,n_2\right) \\ \rightarrow & gcd \left(n_1,n_2\right) &=& gcd & \left(n_1,n_2\right) \end{array}$
4. n_1 and n_2 are od	$Id: \to \; gcd\; (n_1,n_2) \;\; = \; gcd\;\; [\;(n_1\text{-}n_2)/2\;,\;n_2\;]$
This simplifies the Euc	clidian algorithm to avoid real division operations as
	clidian algorithm to avoid real division operations as aer by 2 is just a single bit right-shift (skip LSB).

Juiu			ute 1, the					6 + <mark>b</mark>	x 17 =	= 1	
		3	.,								
m	u	a1	a2	b1	h2	a	г	INVERSE V	ALUE = B2	GC	D
156	17	1	0	0	1	9	3				
17	3	0	1	1	-9	5	2				
3	2	1	-5	-9	46	1	1				_
2	1	-5	6	46	(-55)	2	0	NVERSE=	-55	GCD=	1
		<u> </u>	<u> </u>		<u> </u>						
			\vdash		<u>/</u>						
		-									
-	Check: Check:	Or 1	17 ⁻¹ = -5	55 = -55	5 +156	= 101	1 m	od 156			