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Introduction to Cryptology
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Lecture-02

Mathematical Background for Cryptography: 

Modular Arithmetic and gcd
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• Euclidean Algorithm, Remainder

Greatest Common Divisor (gcd)

• Group Theory, Rings, Finite Fields

Element’s Order, Euler Theorem

• Prime Numbers

• Prime Number Generation

• Extension Fields

Outlines

Mathematical Background
Number Theory, Groups, Rings and Fields

part 1

part 2

part 3

part 4
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Deepest thanks
To James Massey (ETH Zürich).

for allowing me to use his lecture slides in 1987. 

Many slides, especially those on mathematical 

fundamentals were inspired or used in modified forms in 

whole or in part from Jim Massey’s lecture slides.

I had the pleasure and luck to be first introduced to this topic 

by Jim Massey at the ETH Zurich in 1985

1934-2013

James Massey is a well known 

coding theorist and cryptographer 

Having outstanding and major 

fundamental contributions in the 

last 60 years in the theory and 

technology of coding and 

cryptography.
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Mathematical Background: in Number Theory

Number sets of interest in cryptography:

- Natural numbers N   =    0 1   2   3   .....

- Integers   set                  Z    =  .... -3   -2   -1   0 1   2   3   ......

Modern cryptosystems deploy intensively the above two number sets N and Z in 

representing data blocks.

In many modern cryptographic systems, data blocks are represented as integers. Therefore  

integer algebra need to be introduced in the form of number theory:

n = pi

r

i = 1  

- For any integer  n  N and n >1 :

where all pi’ ‘s are prime factors of n

r is the number of prime factors of n.
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Integer Algebra: Euclidean Division Theorem for Integers

For any Integers n and d with d  0  there is  q and r, such that:

n / d  =   q    +  r / d 

n     =  q d  +  r     where     0   r  < d

Example: 13/5 =  2 + 3/5 

or       13   =  2 . 5  + 3

In the remainder algebra  R5 (13) = 3

We say:    Rd (n) = r ,        r is Remainder of n modulo d
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Integer Algebra: Some Rules in the Remainder Arithmetic

Superposition Property (in linear systems):

Rd (a + b ) = Rd     [ Rd (a) +  Rd  (b) ]

Rd (a . b )  = Rd     [ Rd (a) .  Rd  (b)  ]

Examples:

R5 (7 + 14 ) = R5     [ R5 (7) +  R5  (14) ]

= R5     [ 2       +      4 ]    = R5  (6) = 1

R5 (9 . 22 )   = R5     [ R5 (9)  .  R5  (22) ]

= R5     [     4      .   2  ]   = R5  (8) = 3
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r

0 ... -10 -5 0 5 10 15 .... Remainder Class (coset)
1 ... -9 -4 1 6 11 16 ....

2 ... -8     -3 2 7 12 17 ....

3 ... -7 -2 3 8 13 18 ....

4 ... -6     -1 4 9 14 19 ....

Equivalence Theorem: In the integer remainder system modulo d

Rd (n) = Rd (n + i d )    where n, i are any integers

The Standard Array of remainders in Z:

Integers having the same remainder can be tabulated in the so called “Standard Array” or 

“Slepian Array”.  For d=5, the elements of  Z can be ordered in a table having  5 cosets:

Example: Remainders modulo 5 (adding and substracting multiples of 5):

R5 (7) = R5 [7  +  3 x 5 ]  = R5 [22 ] = 2

R5 (7) = R5 [7  +  -2 x 5 ] = R5 [-3 ] = 2
In this remainder algebra:  22 = -3 = 2

(all are equivalent)

Coset leader

mallest positive integer (Remainder)

Example this coset is equivalent to 3

We have a total of 5 such cosets modulo 5
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gcd: the greatest common divisor of Integers

gcd (m1 , m2 .... mt ) is the greatest positive integer

which divides m1 , m2 .... mt without remainder. 

Example: gcd (15,5) = 5 

gcd (15,9,27,12) = 3

If gcd (n1 , n2) = 1, then   n1 , n2 are called relatively prime integers (coprimes)

Example: gcd (15,28) = 1    =>    15, 28 are relatively prime or coprimes
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Properties of gcd:
gcd (n, 0)      = n   (for n   0) 

gcd (n, 0)      = ?  ,  undefined (if n = 0)

gcd (n1 , n2)  = gcd (n2 , n1)

gcd (n1 , n2)  = gcd ( + n1 , + n2)

Examples:

gcd (15, 10) = gcd (  15+10  , 10 ) = gcd ( 15-10 , 10 )

= gcd ( 15 – 2x10 , 10 ) = gcd (-5,10)

The fundamental property of gcd:

gcd (n1 , n2)  =  gcd (  n1 + i n2 ,  n2    )

or gcd (n1 , n2)  =   gcd (  Rn ( n1) ,  n2 )
2

Or gcd (15, 10)  = gcd ( R10(15) , 10 ) = gcd ( 5 , 10 ) = gcd ( 5 , R5 (10)  )  = gcd (5 , 0 ) = 5
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Start

n1   ,    n2

n2  >   0

yes
?

r=Rn2(ni)=0

no

n1    n2

n2     r

gcd   n2

End

Euclidean gcd Algorithm

n1 n2 r

132 108 24

108 24 12

24 12 0



 

Time Complexity:  <  log2 n + 1   operations

n = Max [n1, n2] 

Example: for 1000 bit integers, at most

1000 steps (divisions) are required

to compute the gcd

Example:

Put larger integer

on the  left side

Remainder

of dividing

132 by 108

gcd when r = 0
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Stein`s improvement  for the Euclidean gcd Algorithm

1.  n1   and  n2 are even: →  gcd (n1 , n2)   =   2 . gcd ( n1 /2 , n2 /2 )

2.  n1 even,  n2 odd : →    gcd (n1 , n2)     =        gcd ( n1 /2 ,   n2   )

3.  n1  odd,  n2 even :              →    gcd (n1 , n2)     =        gcd ( n1 ,   n2 /2 )

4.  n1   and  n2 are odd: →  gcd (n1 , n2)   =        gcd [  (n1-n2) /2 ,  n2   ]

There are 4 cases for n1 and n2 being even or odd integers:

This simplifies the Euclidian algorithm to avoid real division operations as 

dividing an even integer by 2 is just a single bit right-shift (skip LSB). 

Example: 6/2=3   in binary form   110/2 = 011

karl Stein  Prof. Univ LMU München (1913-2000). Mathematician, Cryptographer)
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Time Complexity:  < log2 n + 1

Iterations (substraction+shift)

n = Max [n1, n2] 

 

Stein’s Improvement  for the Euclidean gcd Algorithm

gcd gcd

Bothe n1 and n2 odd?

n2 even?

no
yes

no

no

yes

yes

yes

yes

no

no
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gcd (tn-1, tm-1)  =   t gcd (n, m) - 1

Examples:

gcd(215-1, 220-1) = 2 gcd(15,20) - 1 = 25-1 = 31

gcd[ (x + y)15-1, (x + y)20-1 ] = (x + y)5-1

     x-    x=   )  x   -   x,  x  -  x( gcd
d) (n, gcddn

qqq

Special gcd Properties

more general:
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Extended Euclidean gcd Algorithm

gcd (n1 , n2) =   a . n1 +   b . n2

gcd (n1,n2):  is a linear combination of n1 and n2

no

yes

GCD

GCD

END

Where    n2>0
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gcd (156, 117) =  a . 156 + b . 117

= 1 . 156 + (-1) . 117 = 39

=> a = 1 ,    b = -1

n1 n2 a1 b1 a2 b2 q r computation

156 117 1 0 0 1 1 39 156/117=1+ 39/117

117 39 0 1 1 -1 3 0

gcd (n1 , n2) =   a . n1 +   b . n2

gcd (156, 117) = a 156  + b 117         find a and b

Example 1 : Extended Euclidean gcd Algorithm

a1-qa2 = 1 –1 x 0 =1 b1-qb2 = 0 – 1 x 1 = -1
gcd
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gcd (38, 7) =  a . 38 + b . 7

= -2 . 38 + 11 . 7  = 1

Check!      -76   + 77   =1                   

n1 n2 a1 b1 a2 b2 q r computation

38 7 1 0 0 1 5 3 38/7=5+ 3/38

7 3 0 1 1 -5 2 1

Compute     gcd (38, 7) = a x 38  + b x 7         find a and b

Example 2 : Extended Euclidean gcd Algorithm

gcd (n1 , n2) =   a . n1 +  b . n2

a1-qa2 = 1 –5 x 0 =1

b1-qb2 = 0 – 5 x 1 = -5

7/3=2+ 1/7

3 1 1 -5
0-2x1

-2
1-2x-5

11 3 0 3/1=3+ 0/3

gcd
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Definition: If an integer is invertible under multiplication modulo m, then it is called a unit
Example:  2 x 3 = 6 = 1    (mod  5)

says that  :        3 is the multiplicative inverse of  2  modulo 5    (2-1=3)

or 2 is the multiplicative inverse of  3 modulo 5    (3-1=2)

Fundamental Theorem of units:

An integer  u is a unit modulo m (or u has a multiplicative inverse modulo m) iff (if and only if):

gcd (m, u) = 1

Computing the multiplicative inverse: If gcd (m, u) = 1  then     a.m + b.u = 1

Taking the remainder modulo m of both sides:   Rm (a m + b u) = Rm (1) 

Rm (b . u) = 1  

or Rm b • Rmu =1    =>     u-1 = Rm (b)

or      u-1 =b   (mod m)

That is the multiplicative inverse of u mod m is the parameter b mod m in the extended Euclidian gcd Algorithm.

Example: gcd (7, 3) = 1  =  1 . 7 - 2 . 3      (Extended Euclidian Algorithm)  

R7 (1 . 7  – 2 . 3) = 1

R7 (-2 . 3) = 1     => R7 (3-1) = -2  or    -2 = -2+7 = 5 (mod 7)

That is    3-1 = -2= 5 Check:   3 . -2 = -6 = 1   (mod 7) or   3 . 5 = 15 = 1   (mod 7)

Extended “gcd”  and the Modular Multiplicative Inversion
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gcd (11,9) =  a . 11 + b . 9

= -4 . 11 + 5 . 9  = 1

Check!      -44   + 45   =1                   

n1 n2 a1 b1 a2 b2 q r computation

11 9 1 0 0 1 1 2 11/9 = 1 + 2/11

9 2 0 1 1 0-1x1

-1
4 1

Question: Compute the multiplicative inverse of  9 modulo 11

Solution: Compute     gcd (11, 9) = a x 11  + b x 9 = 1  

if gcd=1, then the inverse is b

Example 3 : Extended gcd Algorithem  and Multiplicative Inverse
gcd (n1 , n2) =   a . n1 +  b . n2

9/2 = 4 + 1/2

2 1 1 -1
0-4x1

-4

1-4x-1

5 2 0 2/1=2+ 0/1

gcd

?

mod 11 => 0 + 5 x 9  = 1  (mod 11)  

=>  5 x 9 mod 11 =1

That is 9-1 mod 11 = 5

a1-qa2 b1-qb2
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Stein`s improvement  for the 

Extended Euclidean gcd Algorithm

(Source: J. Massey ETH Zürich)

nein  = no

ja = yes

gerade = even

Bothe n1 and n2 odd?
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Extended gcd Solution as Excel Sheet:

m u a1 a2 b1 b2 q r

156 17 1 0 0 1 9 3     

17 3 0 1 1 -9 5 2     

3 2 1 -5 -9 46 1 1     

2 1 -5 6 46 -55 2 0 INVERSE= -55 GCD= 1

             

             

             

             

INVERSE VALUE = B2 GCD

Check: 17 x - 55  = -155 = -155+156 =  1    mod 156

Or 17-1= -55 = -55 +156 = 101

Check:       17 x 101 = 1717 = 1 mod 156

Solution: Compute     gcd (156, 17) = a x 156  + b x 17 = 1  

if gcd=1, then the inverse is b


