Introduction to Cryptology

Lecture-02
Mathematical Background for Cryptography: Modular Arithmetic and gcd
07.03.2023, v4

Mathematical Background
 Number Theory, Groups, Rings and Fields

Outlines

- Euclidean Algorithm, Remainder	part 1
Greatest Common Divisor (gcd)	

- Group Theory, Rings, Finite Fields	part 2
Element's Order, Euler Theorem	

- Prime Numbers	part 3
- Prime Number Generation	

- Prime Number Generation
- Extension Fields | part 4

Page: ${ }^{2}$

Mathematical Background: in Number Theory
In many modern cryptographic systems, data blocks are represented as integers. Therefore
integer algebra need to be introduced in the form of number theory:
Number sets of interest in cryptography:

- Natural numbers $\quad \mathrm{N}=0123$.....

- For any integer $n \in \mathbf{N}$ and $\mathrm{n}>1$:

$$
\mathrm{n}=\prod_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{i}} \quad \text { where all } \mathrm{p}_{\mathrm{i}} \text { 's are prime factors of } \mathrm{n}
$$

r is the number of prime factors of n.
Modern cryptosystems deploy intensively the above two number sets \mathbf{N} and \mathbf{Z} in representing data blocks.

Integer Algebra: Some Rules in the Remainder Arithmetic
Superposition Property (in linear systems):
$R_{d}(a+b)=R_{d}\left[R_{d}(a)+R_{d}(b)\right]$
$R_{d}(a \cdot b)=R_{d}\left[R_{d}(a) \cdot R_{d}(b)\right]$

Examples:
$R_{5}(7+14)=R_{5}\left[R_{5}(7)+R_{5}(14)\right]$
$=R_{5}[2+4]=R_{5}(6)=1$
$R_{5}(9.22)=R_{5}\left[R_{5}(9) \cdot R_{5}(22)\right]$
$=R_{5}\left[\begin{array}{c}4 \\ 4\end{array}\right]=R_{5}(8)=3$

Equivalence Theorem: In the integer remainder system modulo d
$R_{d}(n)=R_{d}(n+i d) \quad$ where n, i are any integers
Example: Remainders modulo 5 (adding and substracting multiples of 5): $\mathrm{R}_{5}(7)=\mathrm{R}_{5}[7+3 \times 5]=\mathrm{R}_{5}[22]=2$
$R_{5}(7)=R_{5}[7+-2 \times 5]=R_{5}[-3]=2$
 In this remainder algebra: $22=\mathbf{- 3}=2$ (all are equivalent)

The Standard Array of remainders in Z:
Integers having the same remainder can be tabulated in the so called "Standard Array" or "Slepian Array". For $d=5$, the elements of Z can be ordered in a table having 5 cosets:

gcd: the greatest common divisor of Integers
$\operatorname{gcd}\left(m_{1}, m_{2} \ldots m_{t}\right)$ is the greatest positive integer
which divides $m_{1}, m_{2} \ldots . m_{t}$ without remainder.
Example: $\operatorname{gcd}(15,5)=5$
$\operatorname{gcd}(15,9,27,12)=3$
If $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then n_{1}, n_{2} are called relatively prime integers (coprimes)

Example: $\operatorname{gcd}(15,28)=1 \Rightarrow 15,28$ are relatively prime or coprimes
\qquad

Properties of gcd:

$\operatorname{gcd}(\mathrm{n}, 0) \quad=\mathrm{n}$ (for $\mathrm{n} \neq 0)$
$\operatorname{gcd}(n, 0)=$?, undefined (if $n=0)$
$\operatorname{gcd}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)=\operatorname{gcd}\left(\mathrm{n}_{2}, \mathrm{n}_{1}\right)$
$\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(\pm n_{1}, \pm n_{2}\right)$
The fundamental property of gcd:

	$\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1}+i n_{2}, n_{2}\right)$
or	$\operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(R_{n_{2}}\left(n_{1}\right), n_{2}\right)$
$\operatorname{Examples:}$	
$\operatorname{gcd}(15,10)$	$=\operatorname{gcd}(15+10,10)=\operatorname{gcd}(15-10,10)$
	$\operatorname{gcd}(15-2 \times 10,10)=\operatorname{gcd}(-5,10)$

Euclidean gcd Algorithm

Stein's improvement for the Euclidean gcd Algorithm
karl Stein Prof. Univ LMU München (1913-2000). Mathematician, Cryptographer)
There are 4 cases for n_{1} and n_{2} being even or odd integers:

1. n_{1} and n_{2} are even: $\rightarrow \operatorname{gcd}\left(n_{1}, n_{2}\right)=2 \cdot \operatorname{gcd}\left(n_{1} / 2, n_{2} / 2\right)$
2. n_{1} even, n_{2} odd: $\quad \rightarrow \operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1} / 2, n_{2}\right)$
3. n_{1} odd, n_{2} even : $\quad \rightarrow \operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left(n_{1}, n_{2} / 2\right)$
4. n_{1} and n_{2} are odd: $\rightarrow \operatorname{gcd}\left(n_{1}, n_{2}\right)=\operatorname{gcd}\left[\left(n_{1}-n_{2}\right) / 2, n_{2}\right]$

This simplifies the Euclidian algorithm to avoid real division operations as dividing an even integer by 2 is just a single bit right-shift (skip LSB). Example: $6 / 2=3$ in binary form $110 / 2=011$

Stein's Improvement for the Euclidean gcd Algorithm

Special gcd Properties

```
gcd (tn-1, tm-1) = tgcd (n,m)-1
Examples:
gcd(2}\mp@subsup{}{}{15}-1,\mp@subsup{2}{}{20-1})=2\operatorname{gcd}(15,20)-1=\mp@subsup{2}{}{5}-1=3
gcd[(x+y)}\mp@subsup{}{}{15}-1,(x+y\mp@subsup{)}{}{20-1}]=(x+y\mp@subsup{)}{}{5}-
more general:
gcd( }\mp@subsup{x}{}{\mp@subsup{q}{}{n}}-x,\mp@subsup{x}{}{\mp@subsup{q}{}{d}}-x)=\mp@subsup{x}{}{\mp@subsup{q}{}{\mathrm{ gcd(n,d)}}}-\mp@subsup{x}{}{\prime
```


Example 1: Extended Euclidean gcd Algorithm

$\operatorname{gcd}\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)=\mathrm{a} \cdot \mathrm{n}_{1}+\mathrm{b} . \mathrm{n}_{2}$
$\operatorname{gcd}(156,117)=a 156+b 117 \quad$ find a and b

Example 2: Extended Euclidean gcd Algorithm

$\operatorname{gcd}\left(n_{1}, n_{2}\right)=a \cdot n_{1}+b . n_{2}$
Compute $\operatorname{gcd}(38,7)=a \times 38+b \times 7 \quad$ find a and b

$\begin{aligned} & a_{1}-q a_{2}=1-5 \times 0=1 \\ & b_{1}-q b_{2}=0-5 \times 1=-5 \end{aligned}$							
$\mathrm{n}_{1} \mathrm{n}_{2}$	a_{1}	b_{1}	a_{2}	b_{2}	q	r	computation
88 7 8	1	0	0	1	5	3	38/7-5+3/38
$7{ }^{7}$	0	1	${ }^{1}$	-5^{*}	2	1	7/3=2+1/7
3^{3} (1).	1	-5	\mid	${ }_{\substack{1.2 \times 5 \\ 11}}^{\substack{1}}$	3	0	3/1/3+ $0 / 3$
Check! -76 + $77=1$							

Extended "gcd" and the Modular Multiplicative Inversion Definition: If an integer is invertible under multiplication modulo m, then it is called a unit Example: $2 \times 3=6=1(\bmod 5)$
says that : $\quad 3$ is the multiplicative inverse of 2 modulo $5 \quad\left(2^{-1}=3\right)$ or 2 is the multiplicative inverse of 3 modulo $5 \quad\left(3^{-1}=2\right)$
Fundamental Theorem of units:
An integer u is a unit modulo m (or u has a multiplicative inverse modulo m) iff (if and only if): $\operatorname{gcd}(\mathrm{m}, \mathrm{u})=1$

Computing the multiplicative inverse: If $\mathrm{gcd}(\mathrm{m}, \mathrm{u})=1$ then $\mathrm{a} \cdot \mathrm{m}+\mathrm{b} \cdot \mathrm{u}=1$ Taking the remainder modulo m of both sides: $R_{m}(\mathrm{a} \mathrm{m}+\mathrm{bu})=R_{m}(1$

$$
\begin{aligned}
& R_{m}(\mathrm{~b} \cdot \mathrm{u})=1 \\
& \text { or } \mathrm{R}_{m} \mathrm{~b} \cdot \mathrm{R}_{m} \mathrm{u}=1 \Rightarrow \\
& \\
& \\
& \\
& \text { or }
\end{aligned}
$$

That is the multiplicative inverse of $u \bmod m$ is the parameter $\underline{b \bmod m}$ in the extended Euclidian gcd Algorithm.
Example: $\quad \operatorname{gcd}(7,3)=1=1.7-2.3 \quad$ (Extended Euclidian Algorithm

$$
R_{7}(1.7-2.3)=1
$$

$R_{7}(-2.3)=1 \quad \Rightarrow R_{7}\left(3^{-1}\right)=-2$ or $\quad-2=-2+7=5(\bmod 7)$
That is $3^{-1}=-2=5$ Check: $3 .-2=-6=1(\bmod 7)$ or $3.5=15=1(\bmod 7)$

Example 3: Extended gcd Algorithem and Multiplicative Inverse $\operatorname{gcd}\left(n_{1}, n_{2}\right)=a \cdot n_{1}+b \cdot n_{2}$

Question: Compute the multiplicative inverse of 9 modulo 11
Solution: Compute $\operatorname{gcd}(11,9)=a \times 11+b \times 9 \stackrel{?}{=}$
if $\mathrm{gcd}=1$, then the inverse is b

n_{1}	n_{2}	a_{1}	b_{1}	a_{2}	b_{2}	q	r	computation
11	9	1	0	0	-1	1	2	$11 / 9=1+2 / 11$
	2	0	$1{ }^{*}$	1	0-1x1	4	1	$9 / 2=4+1 / 2$
2	(1).	1	-1	${ }_{0}^{0-4 \times 1}$	${ }_{5}^{1-4 x-1}$	2	0	$2 / 1=2+0 / 1$

Extended ged Solution as Excel Sheet:

Solution: Compute $\operatorname{gcd}(156,17)=a \times 156+b \times 17=1$
if gcd $=1$, then the inverse is \mathbf{b}

Check: $\quad 17 x-55=-155=-155+156=1 \bmod 156$ Or $17^{-1}=-55=-55+156=101$

Check: $\quad 17 \times 101=1717=1 \bmod 156$

