

1

Q1: For the following pairs ($m=125, u=65$) of integers find gcd (m, u) (4P) and the integers a, b such that $\operatorname{gcd}(m, u)=a \cdot m+b \cdot u$ Solution:

Q2: Compute $\operatorname{gcd}\left[\left(\mathbf{4}^{68}-\mathbf{1}, \mathbf{1 6}^{152}-\mathbf{1}\right)\right]$
$=\left[4^{68}-1,4^{2 \cdot 152}-1\right]$
$=\left[4^{\operatorname{gcd}(68,2 \cdot 152)}-1\right.$
$=\left[4^{\operatorname{gcd}(304,68)}-1\right]$
$=\left[\begin{array}{ll}4^{4}-1\end{array}\right]$
$=[256-1]$
$=255$

Q3: Compute the multiplicative order of 7^{7} in $\mathrm{GF}(127)$ knowing that 7 is a primitiv element in $\mathrm{GF}(127)$.
Since $\operatorname{ord}(7)=127-1=126$
$\operatorname{ord}\left(\alpha^{\prime}\right)=\frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}[\operatorname{ord}(\alpha), i]} \Rightarrow \operatorname{ord}\left(7^{7}\right)=\frac{126}{\operatorname{gcd}[126,7]}=\frac{126}{7}=18$

Q4: How many elements are there in the group of units Z_{m} for $m=5 \cdot 23=115$. (9 P)

- Compute the highest possible multiplicative order for a unit in $\mathrm{Z}_{\mathrm{m}}^{*}$? Highest possible order is: $\lambda(5.23)=\operatorname{Icm}[\lambda(5), \lambda(23)]$
$=\operatorname{lcm}[\varphi(5), \varphi(23)]=\operatorname{lcm}[4,22]$
$=4.22 / \operatorname{gcd}(4,22)=88 / 2=44$
- How many elements are there in Z^{*}
\# of elements in the group is $\varphi(5.23)=(5-1)(23-1)=88$
- Compute the multiplicative order of the element 2

Possible orders are the divisors of $\lambda(115)=44=2 \times 2 \times 11$ which are $1,2,4,11,22,44$ $2^{1} \neq 1,2^{2}=4 \neq 1,2^{4}=16 \neq 1,2^{11}=93 \neq 1,2^{22}=24 \neq 1 \Rightarrow$ order of 2 is 44

4

Q5: Reduce the following expressions to the smallest positive integers in the corresponding deployed algebra:

1. $R_{39}\left(41^{3}-(33)^{2} \cdot 38^{33}\right)=$
$=\mathrm{R}_{39}\left((2)^{3}-(-6)^{2} \cdot(-1)^{33}\right)$
$=R_{39}(8-(36 \cdot-1))$
$=\mathrm{R}_{39}(8+36)$
$=44 \bmod 39=5$
2. $\left(2+5 x^{3}\right)\left(7-4 x^{3}-5 x^{5}\right)$ over $\mathrm{GF}(11)=$
$=14-8 x^{3}-10 x^{5}+35 x^{3}-20 x^{6}-25 x^{2}$
$=3-8 x^{3}-10 x^{5}+2 x^{3}-9 x^{6}-3 x$
$=8 x^{8}+2 x^{6}+1 x^{5}+5 x^{3}+3$

Q6: Are the following sentences true or false? Give the reason for your answer

The order of the element x modulo any irreducible polynomial over $\mathrm{GF}\left(2^{m}\right)$ is $2^{m}-1$.

False, This holds only for primitive irreducible polynomial

A primitive group's element is an element having the maximum possible order

True

\qquad

Q7: In GF(59).

1. Compute the possible multiplicative orders for the multiplicative group in the field.

Possible multiplicative orders are the divisors of $\varphi(59)=58$.
These are: 1,2,29 and 58
2. Compute the number of primitive elements.
\# of primitive elements $\varphi(58)=\varphi(2.29)=2 \cdot 29(1-1 / 2)(1-1 / 29)=28$

Q8: $\quad \operatorname{GF}\left(2^{7}\right)$ is generated by the irreducible polynomial $\mathrm{P}(\mathrm{x})=(11001011)$
The element $\beta=0010001=x^{4}+1$ is selected from $\mathrm{GF}\left(2^{7}\right)$.
[hint $\left(2^{2}-1\right)=127=$ prime]

1. Compute the multiplicative order of $\beta=x^{4}+1$

Possible orders are divisors of 127: these are 1 and 127
since: $\left(x^{4}+1\right)^{1} \neq 1$, then
\Rightarrow the multipicative order of β is 127
2. Compute β^{2} and give the corresponding binary vector of β^{2}.
$P(x)=x^{7}+x^{6}+x^{3}+x+1=0 \Rightarrow x^{7}=x^{6}+x^{3}+x+1$
$\beta=x^{4}+1 \Rightarrow \beta^{2}=x^{8}+1$
$\mathrm{x}^{7}=\mathrm{x}^{6}+\mathrm{x}^{3}+\mathrm{x}+1$
$x^{8}=x^{7}+x^{4}+x^{2}+x$
$x^{8}=x^{6}+x^{3}+x+1+x^{4}+x^{2}+x=x^{6}+x^{4}+x^{3}+x^{2}+1$
$\beta^{2}=x^{8}+1=x^{6}+x^{4}+x^{3}+x^{2}+X+X=x^{6}+x^{4}+x^{3}+x^{2}$
$=1011100$

Q9: Sketch the scheme of one unconditionally secure cipher and set the necessary operation conditions therefore.

11
3. Which minimum number of tests are required to find out whether a given element β is primitive?
$\beta^{1} \neq 1, \beta^{2} \neq 1$ and $\beta^{29} \neq 1 \quad$ (three tests are required)
4. Compute the multiplicative order of 3.
$3^{1} \neq 1,3^{2}=9 \neq 1,3^{29}=1=>$ order of 3 is 29
5. Compute 3^{-170} by computing the smallest positive integer t, for which $3^{-170}=3^{t}$ holds.
$3^{-170}=3^{t}=3^{-170} \mathbf{m o d} 29=3^{25}$
$\Rightarrow \mathrm{t}=25$
Remark

- As the order of a is 29, the smallest modulus in the exponent is 29
- the modulus 58 is usable however, would not deliver the smallest t

8
3. Compute the smallest positive integer t for which $\boldsymbol{\beta}^{-120}=\boldsymbol{\beta}^{\mathrm{t}}$ holds.
$\boldsymbol{B}^{-120 \bmod 127}=\boldsymbol{\beta}^{-120+127}=\boldsymbol{\beta}^{\mathbf{7}}=\boldsymbol{\beta}^{\mathbf{t}} \quad \Rightarrow \mathrm{t}=\mathbf{7}$
Remark : As the order of a is 127 , the smallest modulus in the exponent is 127
4. Compute the binary vector corresponding to $\left(x^{5}+x^{2}+1\right)^{2}$.
$\left(x^{5}+x^{2}+1\right)^{2}=\left(x^{10}+x^{4}+1\right)$
$x^{7}=x^{6}+x^{3}+x+1$,
$x^{8}=x^{7}+x^{4}+x^{2}+x=x^{6}+x^{3}+x+1+x^{4}+x^{2}+x=x^{6}+x^{4}+x^{3}+x^{2}+1$
$\mathrm{x}^{9}=\mathrm{x}^{7}+\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}=\mathrm{x}^{6}+\mathrm{x}^{3}+\mathrm{x}+1+\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}=\mathrm{x}^{6}+\mathrm{x}^{5}+\mathrm{x}^{4}+1$
$x^{10}=x^{7}+x^{6}+x^{5}+x=x^{6}+x^{3}+x+1+x^{6}+x^{5}+x=x^{5}+x^{3}+1$
Substituting in $x^{10}+x^{4}+1=x^{5}+x^{3}+1+x^{4}+1=x^{5}+x^{4}+x^{3}=0111000$
\qquad
10

12

```
Q12: A block cipher having a key length of 194 bits is encrypting a clear text. Where, the clear (9 P
    text block size is 256 bits and the unicity distance of the cipher }\mp@subsup{\textrm{n}}{4}{}=258\mathrm{ bits.
    Compute the entropy of the clear text.
    Compute the entropy of the clear text. 
        clear text block. And the clear text is compressed to 50% of its original length.
        clear text block. And the clear text is compressed to 50% of its original length.
        /s the cipher theoretically breakable a
    Solution: K=194 bits, n}=258\mathrm{ bits, N=256 bits
    1. Entropy of the clear text
        Unicity distance }\mp@subsup{n}{u}{}=K/r->\mathrm{ the redundancy is r=K/nu}=194/258=0,7
        As}r=[N-H(x)]/N = H(X)=N-N.r r> H(x)=N(1-r
```



```
    New Unicity distance after compression
    50% clear text block compression results with unchanged clear text
        entropy of 64 bits in each 128 bits compressed block.
        Using the same cipher block size results with 192 compressed clear text bits in each 256 bits block +64 bits
        random padding. The clear text entropy in the 192 bits is 192 < 64/128=96 bits. The new redundancy is:
        r'= 256-(96+64)/256 = 0,375.
        Therefore the new unicity distance is }\mp@subsup{n}{u}{\prime}\mp@subsup{}{}{\prime}=K/\mp@subsup{r}{}{\prime}=1940,375=517,33 bits
    After modifications, the observer can theoretically reveal the secret key as the number of the observed
        cryptogram bits is 600 bits which is greater than the new Unicity distance of (517 bits)
```

A crypto-system requires to create a prime number. The number $P=2 \times(3 \times 13)+1=79$ is proposed to be used to generate $G F(P)$, where 13 and 3 are two primes.

1. Prove that P is a prime according to Pocklington's theorem.
2. Find computationally the multiplicative orders of the elements 2 and 3 in $\operatorname{GF}(79)$. Compute the probability, that a randomly chosen element is a primitive one.
3. Encrypt the message M using a simple secret-key multiplication cipher $C(M)=K_{s}$. M $\bmod 79$. Select $\mathrm{K}_{\mathrm{s}}=32$. Compute the number of usable keys for this cipher
4. Decrypt C(M)
5. Under which conditions is the cipher $\mathrm{C}(\mathrm{M})$ impossible to break ? Why?

Solution:

1. Prove that P is prime according to Pocklington's Theorem.
$P=R . F+1=2(3 \times 13)+1=79, F=3 \times 13$ and $R=2$. Is 79 a prime?
Proof: 1. select $a=6, a^{p \cdot 1}=1(\bmod P) \Leftrightarrow 6^{78}=1(\bmod 79)$ is true

2. $\mathrm{F}>\sqrt{79}=8, \mathrm{xx}$ that is $23>8, \mathrm{xx}$ is true

As all conditions 1,2 and 3 are all true $\Rightarrow 79$ is for sure a prime number
2. Find computationally the multiplicative orders of the elements 2 and 3 in $\operatorname{GF}(79)$. Compute the probability, that a randomly chosen element is a primitive one.
Possible multiplicative orders are the divisors of of $\varphi(79)=78$ that is $=>1,2,3,6,13,26,39,78$ Checking if the element 2 is a primitive one: $2^{1} \neq 1,2^{2} \neq 1,2^{3} \neq 1,2^{6} \neq 1,2^{13}=55 \neq 1$, Checking if the element 2 is a primitive one: $2 \neq 1,2^{2} \neq 1,2^{3} \neq 1$,

Checking if the element 3 is a primitive one:
${ }^{1} \neq 1,3^{2} \neq 1,3^{3} \neq 1,3^{6}=18 \neq 1,3^{13}=24 \neq 1,3^{26}=23 \neq 1,3^{39}=78 \neq 1$,
$\Rightarrow \operatorname{Ord}(3)=78 \Rightarrow 3$ is a primitive element
he probabiity that a randomly selected element is primitive.
\# of all non-zere elements : $\quad 79-1=78$
\# of primitive elements: $\quad \varphi(78)=\varphi(2.3 .13)=(2-1)(3-1)(13-1)=24$
$P($ element=primitive $)=(24 / 78) .100=30,77 \%$

Annex:

