

1

Solution:

1. Find out the adequate open key of user A from the following list of integers: [$12,21,35]$. Compute the corresponding secret key for user A .
$N_{A}=19 \times 7=133, \varphi\left(N_{A}\right)=(19-1)(7-1)=108$
 $E_{A}=35$
$D_{A}=-37 \bmod 108=71$ (see computation below)

2. Find out the adequate open key of user B from the following list of integers: [$16,39,22]$. Compute the corresponding secret key for user B.
$N_{\mathrm{B}}=17 \times 5=85, \varphi\left(N_{\mathrm{B}}\right)=(17-1)(5-1)=64$
$\operatorname{gcd}\left(E_{B}, \varphi\left(N_{B}\right)\right]=1 \Rightarrow>\operatorname{select} 39$ as $\operatorname{gcd}(39,64)=1$
$\mathrm{E}_{\mathrm{B}}=39$
$\mathrm{D}_{\mathrm{B}}=23$
$\mathrm{D}_{\mathrm{B}}=23 \mathrm{mod} 64=23$ (see computation below)

3

P2: A block cipher having a key size of 56 bits is encrypting a clear text with the entropy of 90 bits. The clear text redundancy is $\mathrm{r}=0.1$.

1. Compute the cipher's unicity distance n_{u} and its block length N .
2. The unicity distance was doubled by data compression. Compute the new resulting data block length
3. After compression as in (2), the „unicity distance" was enhanced by appending 10 random bits to the clear text block. Compute the new resulting unicity distance.
4. After all the above cipher changes an observer was able to watch 1000 cipher text bits. Would the observer with unlimited resources theoretically be able to break the cipher in that case? Give a reasoning for your answer.

4
1: A RSA cryptosystem with two users A and B having the secret prime number pairs for $A: 19$ and 7 and for $B: 17$ and 5 is used

1. Find out the adequate open key of user A from the following list of integers [12, 21, 35]. Compute the corresponding secret key for user A.
2. Find out the adequate open key of user B from the following list of integers: [$16,39,22$]. Compute the corresponding secret key for user B..
3. User A encrypts the message $M=3$, and send the resulting cryptogram Y_{B} to B. The signature S_{A} of A for the message M is also sent to B. Compute Y_{B} and S_{A}.
4. Decipher the cryptogram Y_{B} on user B 's site and verify the Signature S_{A}
5. $\quad B$ signs the received message M and sends his signature S_{B} back to A. Compute the signature S_{B}.
6. How many open keys are possible for each user?

2
S_{A} of A for thy the the message $M=3$, and send the resulting cryptogram Y_{B} to B. The signature S_{A} of A for the message M is also sent to B. Compute Y_{B} and S_{A}.
$Y_{B}=(M)^{E_{B}} \bmod N_{B} \quad S_{A}=(M)^{D_{A}} \bmod N_{A}$
$Y_{B}=(3)^{39} \bmod 85=62 \quad S_{A}=(3)^{71} \bmod 133=89$
4. Decipher the cryptogram Y_{B} on user B's site and verify the Signature S_{A}.

$$
\xlongequal[M=(Y)^{D_{a}} \bmod N]{\text { Decryption: } \quad \text { Verification: }}
$$

$M=\left(Y_{B}\right)^{D_{B}} \bmod N_{B} \quad\left(3^{r}\right)^{35} \bmod 133=3$
$\left.M=(62)^{23} \bmod 85=\left(3^{39}\right)^{23} \bmod 85 \quad 3^{\left(3^{77}\right)^{32}}\right)^{325} \bmod 133=3$

$\bmod 133=3$ \qquad
5. B signs the received message M and sends his signature S_{B} back to A. Compute the signature S_{B}. $S_{\mathrm{B}}=(M)^{D_{D}} \bmod N_{B}$
$S_{B}=(3)^{23} \bmod 85=62$
6. How many open keys are possible for each user?
\# of keys for user $\mathrm{A}=\varphi\left[\varphi\left(\mathbb{N}_{A}\right)\right]=\varphi(108)=\varphi(2.2 .3 .33)=108(1-1 / 2)(1-1 / 3)=36$ keys \# of keys for user $\left.B=\varphi \varphi\left(N_{B}\right)\right)=\varphi(64)=\varphi\left(2^{6}\right)=64(1-1 / 2)=32$ keys

P3: A Diffie-Hellman (DH) public key exchange system uses GF(2^{6}) deploying the (15 P) irreducible Polynomial $P(x)=x^{6}+x^{3}+1$ as field modulus.

1. Compute the exponents of the element $\delta=x=000010$ as $x^{i} \bmod P(x)$ for $i=1$ to 10 and find the multiplicative order of the element \mathbf{x}.
2. Which multiplicative orders are possible in $\operatorname{GF}\left(2^{6}\right)$?
3. $\beta=\left(1+x^{3}\right)$ is an element in $\operatorname{GF}\left(2^{6}\right)$. Compute the multiplicative order of β. (Hint make use of the fact that $1+\mathrm{x}^{3}=\mathrm{x}^{6}$).
4. Use the element $\alpha=(1+x)$ as a primitive element and compute the DH public keys and the shared key $Z_{A B}$ for users A and B having the secret keys $X_{a}=32$ und $\mathrm{X}_{\mathrm{b}}=57$.
5. Compute the multiplicative order of $(1+\mathrm{x})^{45}$. Compute also all elements having the same order.
6. What is the probability of picking up a primitive element in $\operatorname{GF}\left(2^{6}\right)$ if such element is randomly selected?
Hints
$\alpha=(1+x), \quad a^{3}=1+x+x^{2}+x^{3}, \quad a^{7}=x^{2}+x^{5}, \quad a^{9}=x+x^{2}+x^{5}, \quad a^{20}=1+x+x^{2}, \quad a^{21}=1+x^{3}$

7
shared key Z_{AB} for users A and B having the secret keys $\mathrm{X}_{\mathrm{a}}=32$ und $\mathrm{X}_{\mathrm{b}}=57$.
Hints: $a=(1+x), \quad a^{3}=1+x+x^{2}+x^{3}, a^{7}=x^{2}+x^{5}, \quad a^{9}=x+x^{2}+x^{5}, a^{2 x}=1+x+x^{2}, a^{2}=1+x^{3}$
U Ser $A:$
$\mathrm{X}_{\mathrm{a}}=32$
$\mathrm{y}_{\mathrm{a}}=\alpha^{32}=\mathrm{x}$

$x^{6}=x^{3}+x$
 $z_{\mathrm{ab}}=x+\mathrm{x}^{5}=100010 \quad$ Remark: ord $(\alpha)=63$
5. Compute the multiplicative order of $(1+\mathrm{x})^{45}$. Compute also all elements having the same order.

$$
\begin{aligned}
& \operatorname{ord}\left(\alpha^{\prime}\right)=\frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}[\operatorname{ord}(\alpha), i]} \quad \text { Let } \alpha^{\epsilon s}=\sigma \quad \operatorname{ord}\left(\sigma^{\prime}\right)=\frac{\operatorname{ord}(\sigma)}{\operatorname{gcd}(\operatorname{rrd}(\sigma), i]} \\
& \operatorname{ord}\left(\alpha^{45}\right)=\frac{63}{\operatorname{gcd}[33,45]}=\frac{63}{9}=7 \quad \begin{array}{l}
\text { if } \operatorname{gcd}[\operatorname{rrd}(\sigma), i]=1 \quad \text { then: } \quad \operatorname{ord}\left(\sigma^{\prime}\right)=\operatorname{ord}(\sigma) \\
\text { that } i \text { i should be selectedsuch that, } \operatorname{gcd}(7, \mathrm{i})=1
\end{array} \\
& \text { The other elemets having the same order as that of } \sigma \text { are then: }
\end{aligned}
$$

$$
\begin{aligned}
& a_{1}^{27}, a^{9}, a^{54}, a^{38}, a^{18} \text { all have the orde } \\
& a^{7} a^{20} \overbrace{}^{4} a^{9}=x+x^{2}+x^{5}
\end{aligned}
$$

9

Solution:

1. Compute the exponents of the element $\delta=x=000010$ as $x^{i} \bmod P(x)$ for $i=1$ to 10 and find the multiplicative order of the element x .
$P(x)=x^{6}+x^{3}+1=0 \quad \Rightarrow \quad x^{6}=x^{3}+1$
$x^{1}=x$
$x^{2}=x^{2}$
$x^{2}=x^{2}$
$x^{3}=x^{3}$
$x^{4}=x^{4}$
x^{4}
$x^{6}=x^{9}$
$x^{5}=x^{5}$
$x^{5}=x^{3}$
$x^{6}=x^{3}+1$
$x^{7}=x^{4}+x$
$x^{\prime}=x^{3}+x$
$x^{8}=x^{5}+x^{2}$
$x^{9}=x^{6}+x^{3}=x^{3}+1+x^{3}=1 \quad \Rightarrow$ multiplicative order of x is 9
2. Which multiplicative orders are possible in $\mathrm{GF}\left(2^{6}\right)$?

Possible orders are the divisors of $\mathbf{2}^{6}-1=63$
Divisors of 63 are
Divisors of 63 are: $\quad 1,3,7,9,21,63$
3. $\beta=\left(1+x^{3}\right)$ is an element in $\operatorname{GF}\left(2^{6}\right)$. Compute the multiplicative order of β.
(Hint make use of the fact that $1+x^{3}=x^{6}$).
$\beta=\left(1+x^{3}\right)$ as $x^{3}+1=x^{6} \Rightarrow \beta=x^{6}$,
$\operatorname{ord}(\beta)=\operatorname{ord}\left(x^{6}\right)=\operatorname{ord} x / \operatorname{gcd}(\operatorname{ord} x, 6)=9 / \operatorname{gcd}(9,6)=9 / 3=3 \quad \Rightarrow \quad \operatorname{ord}(\beta)=3$

8

13

P6: Omura proof-of-identity protocol uses GF(53) arithmetic is set up:

1. How many primitive elements do exist in $\mathrm{GF}(53)$?
2. Compute the probability that a randomly selected element is primitive in $\mathrm{GF}(53)$
3. Compute the order of the element $\alpha=3$
4. Use α as an open reference element for the above Omura proof-of-identity protocol system. Generate a "Challenge" by using the random integer $\mathrm{K}=15$ to prove the identity of user A whose secret key is $X_{A}=7$. Compute the response of user A and show all necessary computations to verify his/her identity.

14

Solution:

1. How many primitive elements do exist in $\mathrm{GF}(53)$?

The order of the primitive element $=53-1=52$
Number of prinitive elements is $\varphi(52):$
$\varphi(52)=\varphi\left(2^{2} \cdot 13\right)=52(1-1 / 2)(1-1 / 13)=\quad \frac{\not 224.1 \cdot 1266}{\not 2 \cdot 13}=24$
2. Compute the probability that a randomly selected element is primitive in GF(53).
\# of non-zero elements: $\quad 53-1=52$
\# of primitive elements: $\varphi(52)=24$
$\operatorname{Pr}($ element $=$ primitive $)=(24 / 52) .100=46,15 \%$
3. Compute the order of the element $\alpha=3$

Possible orders are the divisors of of 52 , that is: $1,2,4,13,26,52$
Checking the order of the element $a=3: \quad 3^{2}=9=28 \neq 1$
$3^{1}=3 \neq 1 ; \quad$
$3^{13}=3^{4} \cdot 3^{4} \cdot 3^{4} \cdot 3=30 \neq 1 ; 3^{26}=3^{13} \cdot 3^{13}=52 \neq 1 \quad \Rightarrow \quad$ Ord $(3)=52$

15
4. Use a as an open reference element for the above Omura proof-of-identity protocol system Generate a "Challenge" by using the random integer $\mathrm{K}=15$ to prove the identity of user A who's secret key is $X_{A}=7$. Compute the response of user A and show all necessary computations to verify his/her identity

16

P7: Sketch Massey-Omura lock for Shamir's 3-Pass Protocol over GF($\mathbf{2}^{6}$) using the (12 P) primitive polynomial modulus $\mathrm{p}(\mathrm{x})=1+\mathrm{x}+\mathrm{x}^{6}$.

1. Compute the number of all possible secret keys for each user.
2. The secret key for users A and B are 31 and 19 respectively. Compute all the exchanged messages and show all necessary computations for a message M $=\mathrm{x}=000010$.

Solution:

GF $\left(2^{6}\right) \quad p(x)=1+x+x^{6}$

1. Compute the number of all possible secret keys for each user.

Condition for a valid key E_{A} is: $\operatorname{gcd}\left(E_{A}, 2^{6}-1\right)=1$ or $\quad \operatorname{gcd}\left(E_{A}, 63\right)=1$
The number of possible keys is then φ (63)
$\Rightarrow \# E_{A}=\varphi(63)=\varphi\left(3^{2} .7\right)=63(1-1 / 3)(1-1 / 7)=63(2 / 3)(6 / 7)=36$ secret keys
2. The secret key for users A and B are 31 and 19 respectively. Compute all the exchanged messages and show all necessary computations for a message $\mathrm{M}=\mathrm{x}=000010$.
User A Modulus in the exponent $=2^{6}-1=63$
$\underline{U s e r B}$

$\mathrm{D}_{\mathrm{a}}=\mathrm{E}_{\mathrm{a}}{ }^{-1} \bmod 63=-2=\underline{61}$
$\mathrm{D}_{\mathrm{b}}=\mathrm{E}_{\mathrm{b}}{ }^{-1} \bmod 63=10$

n_{1}	n_{2}	a_{1}	a_{2}	$\mathrm{~b}_{1}$	$\mathrm{~b}_{2}$	q	r
63	19	1	0	0	1	3	6
19	6	0	1	1	-3	3	1
6	1	1	-3	-3	10	6	0

18

