

1

P1:
A RSA cryptosystem with two users A and B having the following secret prime number pairs: for user $\mathrm{A}: 11$ and 23 and for user $\mathrm{B}: 13$ and 17

1. Find out the adequate public key of user A from the following list of integers: [15, 87, 112] giving the reason for your choice. Compute the corresponding secret key of user A.
2. Find out the adequate public key of user B from the following list of integers: $[55,120,159]$ giving the reason for your choice. Compute the corresponding secret key of user B
3. How many distinct public keys are possible for each user?
4. User B encrypts the message $M=19$, and send the resulting cryptogram $Y_{B A}$ to A. User B then signs $h=\left(M^{2}\right) \bmod N_{A}$ and generates the signature $S_{B A}$. Compute $Y_{B A}$ and $S_{B A}$
5. For which range of the values of M can an attacker compute M by observing $S_{B A}$? Why?
6. Decipher the cryptogram $Y_{B A}$ on user A 's site and verify the Signature $S_{B A}$.

2

Solution:

1. Find out the adequate public key of user A from the following list of integers: $[15,87,112]$ giving the reason for your choice. Compute the corresponding secret key of user A.
$N_{A}=11 \times 23=253, \varphi\left(N_{A}\right)=(11-1)(23-1)=220$
$\operatorname{gcd}\left[E_{A}, \varphi\left(N_{A}\right)\right]=1 \Rightarrow$ select 87 as
$\operatorname{gcd}\left[\mathrm{E}_{\mathrm{A}}, \varphi\left(\mathrm{N}_{\mathrm{A}}\right)\right]=1 \Rightarrow \operatorname{select} 87$ as $\operatorname{gcd}(87,220)=1 \quad$, $071 \bmod 220=43$
$D_{A}=43 \mathrm{mod} 220=($ see computation below)

2.Find out the adequate public key of user B from the following list of integers: [55,120,159] giving the reason for your choice. Compute the corresponding secret key of user B.
$N_{B}=13 \times 17=221, \varphi\left(N_{8}\right)=(13-1)(17-1)=192$ $\operatorname{gcd}\left(\mathrm{E}_{\mathrm{B}}, \varphi\left(\mathrm{N}_{\mathrm{B}}\right)\right]=1=>\operatorname{select} 3$ as $\operatorname{gcd}(55,192)=1$
$\mathrm{E}_{\mathrm{B}}=55$ $\mathrm{D}_{\mathrm{b}}=7$
$\mathrm{D}_{\mathrm{B}}=7 \mathrm{mod} 192$ (see computation below)

2. How many public keys are possible for each user?
\# of keys for user $\mathrm{A}=\varphi\left[\varphi\left(\mathrm{N}_{\mathrm{A}}\right)\right]=\varphi(220)=\varphi\left(2^{2} \cdot 5.11\right)=220(1-1 / 2) \cdot(1-1 / 5),(1-1 / 11)=80$ keys \# of keys for user $\mathrm{B}=\varphi\left[\varphi\left(N_{\mathrm{B}}\right)\right]=\varphi(192)==\varphi\left(2^{6} .3\right)=192(1-1 / 2)(1-1 / 3)=64$ keys

4

```
4. User \(B\) encrypts the message \(M=19\), and send the resulting cryptogram \(Y_{B A}\) to \(A\). User
    \(B\) then signs \(h=\left(M^{2}\right) \bmod N_{A}\) and generates the signature \(S_{B A}\). Compute \(Y_{B A}\) and
    \(\mathrm{S}_{\mathrm{BA}}\). Can an attacker get M by observing \(\mathrm{S}_{\mathrm{BA}}\). if yes how? If No, why?
Encryption:
\(Y_{\text {BA }}=(M)^{\mathrm{Ea}} \bmod \mathrm{N}_{\mathrm{a}}=(19)^{87} \bmod 253=178\)
    \(\frac{\text { Sings. }}{H(M)}=h=\left(M^{2} \bmod N_{A}\right)=19^{2} \bmod 253=108\)
    \(S_{B A}=(h)^{D b} \bmod N_{b}=(108)^{7} \bmod 221=82\)
```

5. For which range of values of M can an attacker compute M by observing $S_{B A}$? Why?

Computing M is passable if $M^{2}<N_{A}$ in that case the square root is computable. As the modulus N_{A} would deliver the real M^{2} and computing the square root is straight forward as the modulus is not involved.
thowever, the modulus is involved, then computing the square root $\bmod N_{A}$ is only possible if the factorization of N_{A} is known.
6. Decipher the cryptogram $Y_{B A}$ on user $\underline{\underline{A}}$'s site and verify the Signature $S_{B A}$
$\frac{\text { Decipher: }}{M=\left(Y_{\text {BA }}\right)^{10}} \bmod N_{a}=(178)^{43} \bmod 253=19$
Verification if M is signed by B:
$h=\left(S_{B A}\right)^{E b} \bmod N_{b}=(82)^{55} \bmod 221=108$
Check if $h=108=M^{2} \bmod N_{a}=19^{2} \bmod 253=108$ is true. Therefore, Signature of B is authentic..

P2: DH over GF(2^{5})
(28 P)
A Diffie-Hellman (DH) public key exchange system uses $\operatorname{GF}\left(2^{5}\right)$ deploying the primitive Polynomial $P(x)=x^{5}+x^{2}+1$ as field modulus.

1. Compute the exponents of the element $x=000010$ as $x^{i} \bmod P(x)$ for $i=1$ to 10 in binary form in $\mathrm{GF}\left(\mathbf{2}^{5}\right)$.
2. Which multiplicative orders are possible for elements in $\mathrm{GF}\left(\mathbf{2}^{5}\right)$? Why? Compute the multiplicative order of the element $\beta=x^{15}$ and its binary vector.
3. Use the element β as a public element and compute the DH public keys Y_{a} and Y_{b} as binary vectors for users A and B having the secret keys $X_{a}=13$ und $X_{b}=19$.
4. Compute the polynomial and binary pattern for the shred key $Z_{A B}$ of users A and B.
5. Setup the EIGamal cryptosystem and compute the cryptogram C_{A} as a binary vector for the message $M=x^{30}$ sent from A to B by using the same above $D H$ setup and using a random $\mathrm{R}=11$.
6. Decrypt C_{A} on B 's side showing all necessary computations.
```
Solution
1. Compute the exponents of the element x=000010 as }\mp@subsup{x}{}{\prime}\operatorname{mod}P(x)\mathrm{ for i=1 to 10 in binary form in GF(25),
        P(x)=\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}+1=0\quad=>\quad\mp@subsup{x}{}{5}=\mp@subsup{x}{}{2}+1
        x'=x=00010
        x = = = =00100
        * *
        5}=\mp@subsup{x}{}{2}+1=001
        x = x }\mp@subsup{x}{}{3}+x=0001
        x}=\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}=1010
        \mp@subsup{x}{}{6}=\mp@subsup{x}{}{5}+\mp@subsup{x}{}{3}=\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+1=0110
        9}=\mp@subsup{x}{}{4}+\mp@subsup{x}{}{3}+x=1101
        \mp@subsup{x}{}{10}=\mp@subsup{x}{}{5}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}=\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+\mp@subsup{x}{}{2}+1=10001
    2. Which multiplicative orders are possible for elements in }\textrm{GF}(\mp@subsup{2}{}{5})\mathrm{ ? Why? Compute the multiplicative order of the
    element }\beta=\mp@subsup{x}{}{15}\mathrm{ and its binary vector.
    Possible orders are the divisors of 25-1 = 31 : that are: 1,31. As x }\mp@subsup{x}{}{1}=1=>\operatorname{Ord}(x)=3
    As ord(\mp@subsup{\alpha}{}{i})=\frac{\operatorname{ord}(\alpha)}{\operatorname{gcd}[\operatorname{ord}(\alpha),i]}=>\quad\operatorname{ord}(\beta)=\operatorname{ord}(\mp@subsup{x}{}{15})=\frac{31}{\operatorname{gcd[31,15]}}=31
    \beta=\mp@subsup{x}{}{15}=\mp@subsup{x}{}{10}\cdot\mp@subsup{x}{}{5}=(\mp@subsup{x}{}{4}+1)(\mp@subsup{x}{}{2}+1)=\mp@subsup{x}{}{6}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+1=\mp@subsup{x}{}{3}+x+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+1=\mp@subsup{x}{}{4}+\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+x+1=11111
```


$\begin{aligned} Y_{a} & =\beta^{13}=\left(x^{15}\right)^{13} \\ & =x^{15} .13 \bmod 31=x^{9}\end{aligned}$
$=x^{15.13 \mathrm{mod} 31}=x^{9}$
$=x^{4}+x^{3}+x$
$\Rightarrow Y_{a}=11010$

User B:
$X_{\mathrm{b}}=19$,
$\begin{aligned} Y_{b} & =\beta^{19}=\left(x^{15}\right)^{19} \\ & =x^{15.19} \bmod 31=x^{6}\end{aligned}$
$=x^{3}+x$
$\Rightarrow Y_{b}=01010$
4. Compute the polynomial and binary pattern for the shred key $Z_{A B}$ of users A and B.

Common secret key for users A and B :
$Z_{a b}=\left(\left(x^{15}\right)^{13}\right)^{19}=x^{3705} \bmod 31=x^{16}=x^{10} \cdot x^{6}=\left(x^{4}+1\right) \cdot\left(x^{3}+x\right)=x^{7}+x^{5}+x^{3}+x=x^{4}+x^{2}+x^{2}+1+x^{3}+x$
$Z_{a b}=x^{4}+x^{3}+x+1=11011$

5. Setup the EIGamal cryptosystem and compute the cryptogram C_{A} as a binary vector for the message

 $\mathrm{M}=\mathrm{x}^{30}$ sent from A to B by using the same above DH setup and using a random $\mathrm{R}=11$.6. Decrypt C_{A} on B 's side showing all necessary computations.

9
P3: Compute the multiplicative inverse of $x^{2}+1$ modulo $P(x)=x^{7}+x^{6}+1$.
Verify your result
Solution

P1(x)	P2(x)	B1(x)	B2(x)	Q(x)	$\mathrm{R}(\mathrm{x})$
$x^{7}+x^{6}+1$	$x^{2}+1$	0	-- 1	$\begin{gathered} x^{5}+x^{4}+x^{3} \\ -+x^{2}+x+1+\cdots \end{gathered}$	- x
$x^{2}+1$	x	$1-10$	$x^{5}+x^{4}+x^{3}+x^{2}+x+1$	- x ----	---1
x	1	$x^{5}+x^{4}+x^{3}+x^{2}+x+1$	$x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$	x	0

Check: $\left(x^{2}+1\right)\left(x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)$

$$
\begin{gathered}
x^{7}=x^{6}+1 \\
x^{8}=x^{7}+x=x^{6}+x+1
\end{gathered}
$$

$=x^{8} x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x^{+1}$
$=x^{6}+x+1+x^{6}+1+x+1$
$=1$
(35 P)
P5: El-Gamal crypto system is set up. A prime number $P=6 \times 13+1=79$ is used to generate $G F(P)$, where $q=13$ is a prime.

1. Prove that P is a prime according to Pocklington's theorem.
2. Find computationally the multiplicative orders of the elements 2 and 3 in $\operatorname{GF}(79)$. Compute the probability, that a randomly chosen element is a primitive one.
3. EIGamal signature scheme according to Fig . 1 is used to sign $M=6$ in $\operatorname{GF}(79)$. The element $\alpha=3$ is selected as a public group generator. Compute the signature S for M according to Fig.1. Assume $\mathrm{X}_{\mathrm{a}}=13$ and select your own adequate K .
4. Encrypt the message M using a simple secret-key multiplication cipher $C(M)=K_{s} . M \bmod 79$. Select $\mathrm{K}_{\mathrm{s}}=32$. Compute the number of possible keys for this cipher.
5. Decrypt C(M)
6. Under which conditions is the cipher $\mathrm{C}(\mathrm{M})$ impossible to break? Why?

Fig. 1
3. ElGamal signature scheme according to Fig. 1 is used to sign the message $M=6$ using $G F(79)$. The element $\alpha=3$ is
selected as a public group generator. Compute the multiplicative order of α and the Signature PS for M according to Fig.1. Assume $X_{a}=13$ and select your own adequate K.

User A signs $\mathrm{M}=6$

$\alpha^{\mathrm{x}_{\mathrm{a}}}=\mathrm{y}_{\mathrm{a}}=3^{13} \bmod 79=24$
Select $k=5 \quad \Rightarrow r=\alpha^{k}=3^{5} \bmod 79=6$
Calculate k^{-1} in $\mathrm{Z}_{\mathrm{P} .1}=5^{-1} \bmod (\mathrm{P}-1)$
$k^{-1}=-31 \bmod 78=-31+78=47$
Signature $\mathrm{S}=\mathrm{k}^{-1}\left(\mathrm{M}-\mathrm{r} . \mathrm{X}_{\mathrm{a}}\right) \bmod (\mathrm{P}-1)=47(6-6.13) \bmod 78=47(6-0) \bmod 78=48$
4. Encrypt the message M using a simple secret-key multiplication cipher $\mathrm{C}(\mathrm{M})=\mathrm{Ks} . \mathrm{M} \bmod 79$.

Select $K_{s}=32$. Compute the number of possible keys for this cipher.
$C(M)=K_{S} \cdot M \bmod 79=32 \times 6 \bmod 79=34 \quad \#$ possible keys for $K_{S}=\varphi(79)=78$.
It is the number of invertible integers modulo 79 ,
5. Decrypt C(M)

Calculate the inverse key to retrieve M :
$\mathrm{K}_{\mathrm{s}}=32$, $\mathrm{K}_{\mathrm{s}} \cdot-1 \bmod 79=-37 \bmod 79=-37+79=42$
$\Rightarrow \mathrm{M}=\mathrm{K}_{\mathrm{s}}{ }^{-1} . \mathrm{C}(\mathrm{M}) \bmod 79=42 \times 34 \bmod 79=6$

6. Under which conditions is the cipher $\mathrm{C}(\mathrm{M})$ impossible to break? Why?

As the modulus used in $\mathrm{C}(\mathrm{M})$ is a prime number, ciphering operates in a multipicative group in $\mathrm{GF}(79)$.
The cipher is impossible to break if the key is not repeatedly used Key-length= clear text length. The cipher is then equivalent to a general Vermam Cipher. In that case Key Entropy = Clear text Entropy (Shannon perfect secrecy condition holds) Page 15

15

Solution:

1. Prove that P is prime according to Pocklington's Theorem.
$P=R . F+1=6.13+1=79, F=13$ and $R=6$. Is 79 a prime?
Proof: 1. $\operatorname{gcd}\left(\mathrm{a}^{(\mathrm{P}-1) / \mathrm{pj}}-1, \mathrm{P}\right)=\operatorname{gcd}\left(6^{138 / 23}-1,79\right)=\operatorname{gcd}(63,139)=1$ is true
2. $a^{P-1}=1(\bmod P) \Leftrightarrow 6^{78}=1(\bmod 79)$ is true
3. $\mathrm{F}>\sqrt{ } 79=8, \mathrm{xx}$ that is $23>8, \mathrm{xx}$ is true

As all conditions 1,2 and 3 are all true $\Rightarrow 79$ is a prime number.
2. Find computationally the multiplicative orders of the elements 2 and 3 in GF(79). Compute the probability, that a randomly chosen element is a primitive one.

- Possible multiplicative orders are the divisors of of $\varphi(79)=78$ that is $=>1, \mathbf{2 , 3}, \mathbf{6}, \mathbf{1 3}, \mathbf{2 6}, \mathbf{3 9}, 78$ Checking if the element 2 is a primitive one: $2^{1} \neq 1,2^{2} \neq 1,2^{3} \neq 1,2^{6} \neq 1,2^{13}=55 \neq 1$, $2^{26}=26 \neq 1,2^{39}=1, \Rightarrow$ Ord $(2)=39 \Rightarrow 2$ is not a primitive element.
- Checking if the element 3 is a primitive one: $3^{1} \neq 1,3^{2} \neq 1,3^{3} \neq 1,3^{6}=18 \neq 1,3^{13}=24 \neq 1$, $3^{26}=23 \neq 1,3^{39}=78 \neq 1, \Rightarrow \operatorname{Ord}(3)=78 \Rightarrow 3$ is a primitive element
the probability that a randomly selected element is primitive.
\# of all non-zero elements: $\quad 79-1=78$
\# of primitive elements: $\quad \varphi(78)=\varphi(2.3 .13)=(2-1)(3-1)(13-1)=24$
$P($ element $=$ primitive $)=(24 / 78) .100=30,77 \%$

A Massey-Omura lock for Shamir's 3-Pass Protocol is set up over GF(2^{6}) using the irreducible polynomial $p(x)=x^{6}+x^{4}+x^{2}+x+1$ as a field modulus.

1. Compute the multiplicative order of x
2. The secret key for users A and B are 16 and 23 respectively. A message $M=x^{8}$ is sent from A to B. Compute all the exchanged 3-pass messages as powers of x with the smallest possible power of x .
3. Compute the number of possible distinct secret keys for each user
4. Compute the maximum number of simple exponentiation search cycles required to break the cipher by a known clear text-cipher text attack? (technical reasons are required!)
