

4. User B encrypts the message M=19, and send the resulting cryptogram Y_{BA} to A. User B then signs h= (M^2)mod N _A and generates the signature S _{BA} . Compute Y _{BA} and S _{BA} . Can an attacker get M by observing S _{BA} . If yes how? If No, why?	
	<u>5</u>
$\begin{array}{l} \frac{Sings:}{H(M)} = h = (M^2 \bmod N_{A}) = & 19^2 \bmod 253 = 108\\ S_{BA} = (h)^{2/5} \bmod N_{5} = (108)^7 \mod 221 = 82 \end{array}$	5
5. For which range of values of M can an attacker compute M by observing \mathbf{S}_{BA} ? Why?	
Computing M is passable if $M^2 < N_A$ in that case the square root is computable. As the modulus N _A would delive real M ² and computing the square root is straight forward as the modulus is not involved. If however, the modulus is involved, then computing the square root mod N _A is only possible if the factorization of known.	
6. Decipher the cryptogram Y_{BA} on user <u>A</u> 's site and verify the Signature S_{BA}	
Decipher: $M = (Y_{BA})^{G_A} \mod N_a = (178)^{43} \mod 253=19$	4
$\frac{Verification if M is signed by B_{-}}{h \in (S_{24})^{10} \mod M_{\odot}} = (82)^{50} \mod 221 \pm 108$ Check if h=108 = M ² mod N _a = 19 ² mod 253 = 108 is true. Therefore, Signature of B is authentic	
Pa	ige 5

P2	: DH over GF(2 ⁵) (28 P)
	iffie-Hellman (DH) public key exchange system uses GF(2 ⁵) deploying the primitive ynomial P(x) = x ⁵ + x ² + 1 as field modulus.
1.	Compute the exponents of the element $x = 000010$ as $x^i \mod P(x)$ for i= 1 to 10 in binary form in GF(2 ⁵).
2.	Which multiplicative orders are possible for elements in GF(2 ^s)? Why? Compute the multiplicative order of the element β = x ¹⁵ and its binary vector.
3.	Use the element β as a public element and compute the DH public keys Y _a and Y _b as binary vectors for users A and B having the secret keys X _a =13 und X _b =19.
4.	Compute the polynomial and binary pattern for the shred key $\rm Z_{AB}$ of users A and B .
5.	Setup the ElGamal cryptosystem and compute the cryptogram C_A as a binary vector for the message $M=x^{20}$ sent from A to B by using the same above DH setup and using random R=11.
6.	Decrypt C _A on B's side showing all necessary computations.

P(element=primitive) = (24 / 78) . 100 = 30,77%

Page 14

