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H
A RSA cryptosystem with two users A and B having the following secret prime
number pairs: for user A: 11 and 23 and for user B: 13 and 17

1. Find out the adequate public key of user A from the following list of integers:
[15, 87, 112] giving the reason for your choice. Compute the corresponding
secret key of user A.

2. Find out the adequate public key of user B from the following list of integers:
[55,120,159] giving the reason for your choice. Compute the corresponding
secret key of user B.

3. How many distinct public keys are possible for each user?

4. User B encrypts the message M=19, and send the resulting cryptogram Yg, to A. User
B then signs h=( M?) mod N, and generates the signature Sg, . Compute Yg, and Sg,.

5. For which range of the values of M can an attacker compute M by observing Sg, ? Why?

6. Decipher the cryptogram Yg, on user A’s site and verify the Signature Sg,.

1. Find out the adequate public key of user A from the following list of integers: [15, 87, 112]
giving the reason for your choice. Compute the corresponding secret key of user A.

Ny = 11%23=253, ¢ (N, ) = (1-1)(23-1) = 220
ged [Ex @ (Nx)]=1 => select 87 as god (87.220) = 1 p, - g7-1mod 220 =43

E=87 m [ ulai]a2] bt INVERSE VALUE] [e)
Dy =43mod 220 = (see below) 22oar 1] 0] 0 4
oj1]1
s o112
als[a2 ]3]
s iz s]e INveRsE= | 43 | Geo= |1

2.Find out the adequate public key of user B from the following list of integers: [55,120,159]
giving the reason for your choice. Compute the corresponding secret key of user B.

No =13 %17 =221 , @ (Ng) = (13-1)(17-1) = 192 =55 mod 19257
qod (Eg, @ (N ) ] =1 => select 3 as ged (55.192) = 1 o] 22 [ 1] & Ja] v [WVERsE VAL
Eg=55 1ez[ss]t] ool 13 27": T
s ooz
Dy =7mod 192 (see computation below) Tl Jlo [vees oo |
I

3. How many public keys are possible for each user?

#of keysoruser A= p[p (N )] = 9 (220) = (22. 5. 1)= 220(1 -12).(1~ 15)(1 - 1)) =80 keys | 4]
#of keys for user B= g [o (Ng )] = @ (192) == ¢ (25 3)= 192(1 -112) (1113 ) = 64 keys
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4. User B encrypts the message M=19, and send the resulting cryptogram Yg, to A. User . 5 28 P)
B then signs h= ( M)mod N, and generates the signature Sg, . Compute Yg, and P2: DH over GF(2 #F)
Sga- Can an attacker get M by observing Sg, . if yes how? If No, why? - N N -
oA getiiby 9% 1Y Y A Diffie-Hellman (DH) public key exchange system uses GF(25) deploying the primitive
Encryption; Polynomial P(x) = x*+ x? + 1 as field modulus.
Y =(M)E mod N, = (19)¢” mod 253=178 E
Sings: 1. Compute the exponents of the element x = 000010 as x' mod P(x) for i= 1 to 10in
H(M)=h = (M?modN,)= 192 mod 253 = 108 binary form in GF(25).
gy =(h)® mod N, = (108)7 mod 221=82

5. For which range of values of M can an attacker compute M by observing Sg, ? Why?

Computing M is passable if M2 < N, in that case the square root is computable. As the modulus N, would deliver the
real M2 and computing the square root is straight forward as the modulus is not involved.

If however, the modulus is involved, then computing the square root mod N, is only possible if the factorization of N is
known.

o

Decipher the cryptogram Yg, on user A's site and verify the Signature Sg,

Decipher:
M= (Ygs )% mod N, = (178)* mod 253=19

Verificationif Mis signed by B::
b= (Sas )E® mod N, = (82)% mod 221=108
Check if h=108 = M2mod N, = 192 mod 253 = 108 is true. Therefore, Signature of B is authentic.
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2. Which multiplicative orders are possible for elements in GF(25)? Why? Compute the
multiplicative order of the element § = x'® and its binary vector.

3. Use the element B as a public element and compute the DH public keys Y, and Y, as
binary vectors for users A and B having the secret keys X,=13 und X,=19.

4. Compute the polynomial and binary pattern for the shred key Z,5 of users Aand B .

5. Setup the ElGamal cryptosy and pute the cryptogram C, as a binary vector
for the message M=x** sent from A to B by using the same above DH setup and using a
random R=11.

6. Decrypt C,onB’s side showing all necessary computations.

Page 6




Solution
1. Compute the exponents of the element x = 000010 as x' mod P(x) for i= 1 to 10in binary form in GF(29).

PH=x+ R +1=0 = =X+

¥=01000
X = x=10000

X6 = X2 +1=00101

X6 = X8 +x=01010

X = x4 41210100

X8 = x5 +x3= x3+ x2 +1=01101

X2 = x4 %8 4x=11010

K02 354 x4 322 18 +\\u )i* 1= 10001

2. Which multiplicative orders are possible for elements in GF(25)? Why? Compute the multiplicative order of the
element B = x'* and its binary vector.

= ord(B) = ord(x'®) = —2— =31

ged[31,15]

B= x15= x10. x8=(x? +1)(x2 +1)= X6 + x4 + x2 + 1= )3+ X+ x4+ X2 + 1= xH+ x3 +x2 + x+ 1 =11111
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3. Use the element B as a public element and compute the DH public keys Y, and Y, as binary vectors
for users A and B having the secretkeys X,=13 und X,=19.

UserA: R UserB:
X=13, i Public directory GF(2%) X,=19,
Y, =p1=(x1) " | Bax'S, PX) =N+ Y, =B19=(x'9)"
= 1513 mod 31= 9 =y 1519 mod 31= 6
= xb X Y,= 11010 =33 4x
Yy= 01010
= Ya= 11010 ’ =D Y,201010
4. Compute the polynomial and binary pattern for the shred key Z,; of usersAand B . E

Common secret key for users A and B:
Zyp= ((x15)13) 19 = x 705 md 31 = x =10, x6= (x4 +1).(x3 +x)= X7 + x5+ X3 4x= x* +\z 241 + X3 4x
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5. Setup the ElGamal cryptosystem and compute the cryptogram C, as a binary vector for the message L
M=x¥sent from A to B by using the same above DH setup and using a random R=11. P3: Compute the multiplicative inverse of x+ 1 modulo P(x) = x” +x° + 1. (6P)
6. Decrypt C, onB’s side showing all necessary computations. N
Verify your result
UserAsends M to B User B receives
=x'5 primiti i 5 .
Xa=13 B=x" primitive element in GF(25) Xb =19 Solution
Vo= Y= x4 4x ¥, =B =x= 11010 Yy = B 0= X3 +x
) ¥, = B2 =x5= 01010 P1(x) P2(x) B1(x) B2(x) Q(x) R(x)
Saxdxd
0 X+x8+1 X2+ X+X+X,_, e 9K
M =M. Z = x®xt= xHm B, Caxd . xxE]
— 241 x e
X 157 XEHXSHXHXSX2HXH 0

7= B0 Re(15)19:11 mod 31z

H r = B R=(x15) 11 mod 31=x10
—|

Z-1= (1) = x10"12mod 31 = 27

As -Xb = -Xb mod(25 -1)

s (K24 1) (XOEXOHX XX
Check: (x2+ 1) (xE+xB+x“+x3+x24x+1) =041
Bz x4 x=x0+x+
= XEXTHEHG I+ XERSHCHXHH X2 ExExrxH

R=11 Xb=-Xb+(31)=-19+31=12 SR
=1
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P4: Ablock cipher having a key length of 194 bits is encrypting a clear text. Where,the (9 P)
clear text block size is 256 bits and the unicity distance of the cipher n, = 258 bits. (35P)

1. Compute the entropy of the clear text.

2. Compute the new unicity distance of the cipher if 64 random bits are appended to
each clear text block. And the clear text is compressed to 50% of its original length.

3. Is the cipher theoretically breakable after this modification if the attacker can only
observe 600 cipher text bits? Why?

Solution: K= 194 bits, n, =258 bits, N =256 bits
1. Entropy of a clear text
Unicity distance n,=K/r > the redundancyis r=K/n,=194/258=0,75
As r=[N-HX]/N => H(X)=N-Nr=> Hx)=N(1-)

s r=[N-Hp
H(x)=N(r-1)=256(1-0.75) = 64 bits <« 256bits block

—
2. New Unicity distance after compression 192 bits compressed clear text 64 bit random ‘
50% clear text compression results with a clear text Li()=860its padding

entropy of 64 in each 128 bits block. Using the same cipher block size results with 192 bits compressed
clear text data in each block + 64 bits random padding
After 50% compression each 128 bits clear text include 64 entropy bits, therefore The clear text entropy
inthe 192 bits is 192 x 64/128 = 96 bits. Therefore the new redundancy is: r'= 256-(96+64)/256 = 0,375.
Therefore the new unicity distance is n,' = Kir' = 194/0,375 = 517,33 bits.
3. After modifications, the observer can_theoretically gain the secret key as the number of the observed
cryptogram bits (600 bits) is greater than the new Unicity distance of the ciphering process (517 bits).
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El-Gamal crypto systemis set up . A prime numberP = 6 x 13 + 1=79 s used to generate GF(P),
where g=13 is a prime.

Prove that P is a prime according to Pocklington’s theorem.

Find computationally the multiplicative orders of the elements 2 and 3 in GF(79). Compute the

p ility, that a randomly chi I is a primitive one.

ElGamal signature scheme accordingto Fig .1 is used to sign M=6in GF(79). The elementa =3 is
selectedas a publicg Compute the signature S for M ing to Fig.1. Assume
X, =13 and select your own adequate K.

Encryptthe message M using a simple secret-key multiplication cipher C(M) =K;.M mod 79.
Select K, = 32. Compute the number of possible keys for this cipher.

Decrypt C(M)
Under which conditions is the cipher C(M) impossible to break ? Why?
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public directory

User A signs M Verifier
X, = Secret Key of A
arsy, P oY,
if
= > 0 '
$= | k' (MD-r.X,) mod (P-1) = § |mmempt 0 =yr.rS modP
' r Then M is authentic

k Random unit
inZp, Signed Message

Fig. 1

Solution:
1. Prove that P is prime according to Pocklington’s Theorem.
P=R.F+1=6.13+1=79,F=13 andR=6. Is 79 aprime?
Proof: 1. ged(a®V'ri-1,P)=ged (6138281, 79)=gcd(63,139)=1 is true
2. aPl=1(modP) ¢ 68=1(mod79) is true
3. F>\79 =8xx thatis 23>8xx istrue
As all conditions 1, 2 and 3 are alltrue = 79 is a prime number.

2. Find i ders of the elements 2 and 3 in GF(79). Compute the
probability, that a randomly chosen element s a primitive one.

+ Possible multiplicative orders are the divisors of of ¢ (79) = 78 thatis => 1, 2,3,6,13,26,39, 78|
+ Checking if the element 2 is a primitive one: 2 1#1,22#1,23#1, 26#1,213=55#1,
226=26#1, 2% =1, Ord (2) = 39 = 2 is not a primitive element.

+ Checking if the element 3 is a primitive one: 31 #1,32# 1,33 #1, 36=18#1, 313=24#1,
3%6=23#1,3%=78#1,= Ord (3) = 78 = 3 is a primitive element

the probability that a randomly selected element is primitive.

#of all non-zero elements : ~ 79-1=78
# of primitive elements: @ (78) = @ ( 2.3.13) = (2-1)(3-1)(13-1) = 24

P( element=primitive ) = (24 / 78 ) . 100 = 30,77%
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3. ElGamal signature scheme according to Fig .1 is used to sign the message M=6 using GF(79). The elementa.=3is
selected as a public group generator. Compute the multiplicative order of & and the Signature PS for M according (15 P)

to Fig.1. Assume X, = 13 and select your own adequate K.

User A signs M=6
a¥i=y,=3" mod79=24 %
Select k=5 =>r=a*=3°mod79=6
Calculate k' inZp,= 5" mod (P-1)
k=-31mod 78 =-31+78= 47

INVERSE= | 31 | GCD=

Signature $= k' (M-r.X,) mod (P-1) =47 (6 - 6.13) mod 78 =47( 6 - 0) mod 78 =48
4. Encrypt the message M using a simple secret-key multiplication cipher C(M)=Ks .M mod 79.

Select Ks = 32. Compute the number of possible keys for this cipher.

C(M) =Ks.M mod 79= 32x6mod 79 =34 # possible keys for Ks = ¢(79) = 78.

It is the number of invertible integers modulo 79,

5. Decrypt C(M) [m T Tan [a2 [oa T2 q [r [verst vae-pa] G0

79 (2] 1]ofo|1l2]1s
Calculate the inverse key to retrieve M: D lslol i1l 21212
K=32, K" mod 79=-37mod79=-37+79=42 [ [2[1[a[2]s [7]1
=>M=Kg".C(M)mod 79=42x 34 mod 79=6 2 [ a5 s |37 | 2| o] mverse= | 37 | Gco=

6. Under which conditions is the cipher C(M) impossible to break ? Why?
As the modulus used in C(M) is a prime number, ciphering operates in a multiplicative group in GF(79).
The cipher is impossible to break if the key is not repeatedly used Key-length= clear text length. The cipher is then equivalent to
ageneral Vemam Cipher. In that case Key Entropy = Clear text Entropy (Shannon perfect secrecy condition holds) page 15

P6:

A Massey-Omura lock for Shamir‘s 3-Pass Protocol is set up over GF(2%) using the

irreducible polynomial p(x) = x8 + x* + x2+ x+ 1 as a field modulus.

1. Compute the multiplicative order of x

2. The secret key for users A and B are 16 and 23 respectively. A message M = x8 is
sent from A to B. Compute all the exchanged 3-pass messages as powers of x
with the smallest possible power of x.

3. Compute the number of possible distinct secret keys for each user

4. Compute the maximum number of simple exponentiation search cycles required
to break the cipher by a known clear text-cipher text attack? (technical reasons
are required!)
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Solution:
1. Write p(x) in binary form and find out the multiplicative order of x
PR =X+ x4 +x+1=0 = X =xiexdex+1
Possible multiplicative orders are the divisors of 2°-1=63=7x 3 x'=x
Divisors of 63 are:  1,3,7,9, 21,63 2=y
Finding the order of x: K¥=xd
XFL O, X = x4 #1,x0 £ 1, X2 =1 xé=x4
=> multiplicative order of x is 21 x5=x5
XB=xt x4 x+1
X=X+ + X2+ X
XE=x 4 xt X0 +x2
. =xtZexe] axtexiex?
2, E, =16 and E,, =23 and their inverses D, and D, =xd+x+1

X824 x24x
X10= x5 + X3 452
D X20= (X10)2= X10 4 x5+ xb
2 [V SV SO o
63 | 16 3]s =X+ xR X X
EREREN| I | =xe0ex+
E | X2 = X2y = x4 xt x4 x
=xtxiax+ ] Hxéexlex

D, [m TuTa1Taz[bsb2[qlr fverstvawe-s G
)

63 1lolol1|afw
23 o1 1 2]1]s
17 I EERE
6 [s|2 3|3 e|1]1
5 |1 3] 5 [ & 1[50l inverse= | 11 | Geo=
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Solution :
2
User A ‘ @ Avithmetic in GF(29) ‘ User B
0
E.= 16 E,= 23
D, = E,=16 1 mod 63 =4 D, = Ey =23 mod 63 =11
M=x8 Y, =M= y816md2i= x2

@=M=xB

Y= Y B = (x2)28 = x 223mod 21=yd

= x 16x1mod 21

4

([l MY,

Y= Y,Pa=x 44mooziz xi6 = A
Note: (x16)tt mod 21= 8=

3. Maximum# possible keys for each user = (28 -1) = ¢(63) = (32'7) = 63* (1-1/3)*(1-1/7) = 36

4. Inthe most secure cases, and if a cleartext-cipher text pair is known, A maximum of 63 search cycles are required
to find out E, or E, if M happens to be a primitive element. Only (25 -1) = 9(63) = 36 such Ms do exist.
In worst case, M may not be primitive and has an order of 3 (as possible orders are 3, 9, 21 or 63. in GF(25) ).
This is the reason why when seting up GF(2"), 271 should be selected as a prime number for highest
security. In that case all messages, except the trivial message M=1 have the maximum order

which is 2"-1 and require that much cycles for revealing secret keys by a simple search.. Page 18
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