

1

## P1: <br> A RSA cryptosystem with two users $A$ and $B$ having the following secret prime number pairs: for user A: 53 and 17 and for user B: 41 and 19

1. Find out the adequate public key of user $A$ from the following list of integers: [35, 26, 48] giving the reason for your choice. Compute the corresponding secret key of user A.
2. Find out the adequate public key of user B from the following list of integers: [125,1024,31] giving the reason for your choice. Compute the corresponding secret key of user B.
3. How many public keys are possible for each user?
4. User $A$ encrypts the message $M=9$, and send the resulting cryptogram $Y_{A B}$ to $B$. User $A$ then signs the cryptogram $Y_{A B}$ and generates the signature $S_{A B}$. Compute $Y_{A B}$ and $S_{A B}$.
5. Decipher the cryptogram $Y_{A B}$ on user $B^{\prime \prime}$ s site and verify the Signature $S_{A B}$.
6. User $B$ signs the received message $M$ and sends his signature $S_{B A}$ back to $A$. Compute the signature $\mathrm{S}_{\mathrm{BA}}$.
7. Find out the adequate public key of user A from the following list of integers: $[35,26,48]$ giving the reason for your choice. Compute the corresponding secret key of user A.
$N_{A}=53 \times 17=901, \varphi\left(N_{A}\right)=(53-1)(17-1)=832$
$\operatorname{gcd}\left[\mathrm{E}_{A}, \varphi\left(\mathrm{~N}_{A}\right)\right]=1 \Rightarrow \operatorname{select} 35 \operatorname{as} \operatorname{gcd}(832,35)=1$
$832=523$ (see computation below)

8. Find out the adequate public key of user $B$ from the following list of integers: [125,1024,31] giving the reason for your choice. Compute the corresponding secret key of user $B$.
$N_{\mathrm{B}}=41 \times 19=779, \varphi\left(\mathrm{~N}_{\mathrm{B}}\right)=(41-1)(19-1)=720$
$\operatorname{gcd}\left(E_{B}, \varphi\left(N_{B}\right)\right]=1 \Rightarrow \operatorname{select} 31$ as $\operatorname{gcd}(720,31)=1 \quad D_{B}=31^{-1} \bmod 720=-209+720=511$

9. How many public keys are possible for each user?
\# of keys for user $A=\varphi\left[\varphi\left(N_{A}\right)\right]=\varphi(832)=\varphi\left(2^{6.13}\right)=832(1-1 / 2)(1-1 / 13)=384$ keys
\# of keys for user $B=\varphi\left[\varphi\left(N_{B}\right)\right]=\varphi(720)=\varphi\left(2^{4} .3^{2} .5\right)=720(1-1 / 2)(1-1 / 3)(1-1 / 5)=192$ keys

4



7

```
Solution:
1. For \(\beta=x\), compute \(\beta^{i}\) for \(i=1\) to 10 . What is the multiplicative order of \(x\) ?
\(P(x)=x^{6}+x^{3}+1=0 \quad \Rightarrow \quad x^{6}=x^{3}+1\)
\(x^{1}=x\)
\(x^{2}=x^{2}\)
\(x^{3}=x^{3}\)
\(x^{3}=x^{3}\)
\(x^{4}=x^{4}\)
\(x^{5}=x^{5}\)
\(x^{4}=x^{4}\)
\(x^{5}=x^{5}\)
\(x^{6}=x^{3}+1\)
\(x^{7}=x^{4}+x\)
\(x^{8}=x^{5} x^{2}\)
\(x^{6}=x^{6}+x^{3}\)
\(x^{9}=x^{6}+x^{3}=x^{3}+x^{3}+1=1\)
\(x^{10}=x\)
ord \((x)=9\)
2. Which multiplicative orders are possible for elements in \(\mathrm{GF}\left(\mathbf{2}^{6}\right)\) ?
Possible orders are the divisors of \(2^{6}-1=63\)
Divisors of 63 are: \(\quad 1,3,7,9,21\) and 63
3. Prove that the element \(\delta=1+x=000011\) is a primitive element.
```

```
(x+1)}=x+1\not=
```

(x+1)}=x+1\not=
(x+1)= =(x+1)2.(x+1)=(\mp@subsup{x}{}{2}+1).(x+1)=\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+x+1\not=1
(x+1)= =(x+1)2.(x+1)=(\mp@subsup{x}{}{2}+1).(x+1)=\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+x+1\not=1
(x+1)}=((x+1)3\mp@subsup{)}{}{2},(x+1)=(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+x+1)\mp@subsup{)}{}{2}(x+1)=(\mp@subsup{x}{}{6}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+1).(x+1)=\mp@subsup{x}{}{7}+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{3}+x+\mp@subsup{x}{}{6}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+
(x+1)}=((x+1)3\mp@subsup{)}{}{2},(x+1)=(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}+x+1)\mp@subsup{)}{}{2}(x+1)=(\mp@subsup{x}{}{6}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+1).(x+1)=\mp@subsup{x}{}{7}+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{3}+x+\mp@subsup{x}{}{6}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+
=\mp@subsup{x}{}{4}+x+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{3}+x++\mp@subsup{x}{}{3}+1+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+1=\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}\not=1
=\mp@subsup{x}{}{4}+x+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{3}+x++\mp@subsup{x}{}{3}+1+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{2}+1=\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}\not=1
(x+1)}=(x+1)\cdot(x+1)\mp@subsup{)}{}{2}=(\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2})\cdot(\mp@subsup{x}{}{2}+1)=\mp@subsup{x}{}{7}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}=\mp@subsup{x}{}{4}+x+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}=\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}+x=
(x+1)}=(x+1)\cdot(x+1)\mp@subsup{)}{}{2}=(\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2})\cdot(\mp@subsup{x}{}{2}+1)=\mp@subsup{x}{}{7}+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}=\mp@subsup{x}{}{4}+x+\mp@subsup{x}{}{4}+\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}=\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}+x=
(x+1)\mp@subsup{)}{}{1}=((x+1)\mp@subsup{)}{}{3}=(\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}\mp@subsup{)}{}{3}=(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}\mp@subsup{)}{}{2})\cdot(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2})=(\mp@subsup{x}{}{(10}+\mp@subsup{x}{}{4})\cdot(\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2})=(x+\mp@subsup{x}{}{4})\cdot(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2})
(x+1)\mp@subsup{)}{}{1}=((x+1)\mp@subsup{)}{}{3}=(\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2}\mp@subsup{)}{}{3}=(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2}\mp@subsup{)}{}{2})\cdot(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2})=(\mp@subsup{x}{}{(10}+\mp@subsup{x}{}{4})\cdot(\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2})=(x+\mp@subsup{x}{}{4})\cdot(\mp@subsup{x}{}{3}+\mp@subsup{x}{}{2})
=\mp@subsup{x}{}{4}+\mp@subsup{x}{}{3}+\mp@subsup{x}{}{9}+\mp@subsup{x}{}{*}=\mp@subsup{x}{}{3}+1\not=1 -> ord (x+1)=63
=\mp@subsup{x}{}{4}+\mp@subsup{x}{}{3}+\mp@subsup{x}{}{9}+\mp@subsup{x}{}{*}=\mp@subsup{x}{}{3}+1\not=1 -> ord (x+1)=63
$x^{6}=x^{3}+1$
$x^{7}=x^{4}+x$
$x^{3}=x^{5}+x^{2}$
$x^{8}=x^{6}+x^{3}$
$\begin{aligned} x^{9} & =x^{6}+x^{3} \\ & =x^{3}+x^{3}+1\end{aligned}$
$=x^{3}+x^{3}+1=1$
$x^{10}=x$
Page
Page 9

```

9


4: A Diffie-Hellman (DH) public key exchange system uses \(\operatorname{GF}\left(2^{6}\right)\) deploying the (21 P) irreducible polynomial \(p(x)=x^{6}+x^{3}+1\).
1. For \(\beta=\mathrm{x}\), compute \(\beta^{\prime}\) for \(\mathrm{i}=1\) to 10 . What is the multiplicative order of x ? Which multiplicative orders are possible for elements in \(\operatorname{GF}\left(2^{6}\right)\) ? 2
3. Prove that the element \(\delta=1+\mathrm{x}=000011\) is a primitive element. 4
4. Compute the multiplicative order of \(\delta^{14} \quad 2\)
5. Use the element \(\delta\) as a public element in the above \(\operatorname{GF}\left(2^{6}\right)\) and compute the DH public keys \(Y_{\mathrm{a}}\) and \(Y_{\mathrm{b}}\) and the shared secret key \(Z_{A B}\) for users \(A\) and \(B\) having the 6 secret keys \(X_{a}=42\) und \(X_{b}=14\).
compute the binary vectors for \(Y_{a}\) and \(Y_{b}\) and \(Z_{A B}\) by making use of the following: \(\delta^{7}=x^{5}+x^{2}, \delta^{21}=1+x^{3}\),
6. What is the probability of getting an element with order 21 if the element is picked 2 up randomly from GF( \(2^{6}\) )?
7. For any element \(\alpha\) from \(\operatorname{GF}\left(2^{6}\right)\), compute \(t\) for which \(\alpha^{-1}=\alpha^{t}\).

Compute then \(\mathrm{x}^{-1} \bmod \mathrm{p}(\mathrm{x})\) using that result. (Hint make use of the results in 1 )Verify your result.

8
```

7. For any element a from GF (20), computet for which }\mp@subsup{\alpha}{}{1}=\mp@subsup{a}{}{4
Compute then \mp@subsup{x}{}{-1}}\textrm{mod}p(x)\mathrm{ using that result. (Hint make use of the results in 1)
Verify your result.
```


```

    x-1 = x = x }\mp@subsup{x}{}{5}+\mp@subsup{x}{}{2
    Verification:
    x. x-1=x.x }\mp@subsup{x}{}{8}=\mp@subsup{x}{}{9}=1\quad(\mathrm{ see 1)
    ```
```

Solution:

1. Prove that $N$ is a prime according to Pocklington's Theorem.
$N=R \cdot F+1=2 \cdot 281+1=563, F=281$ is a prime, and $R=2$. is $N=563$ a prime? (1)
Proof: $1 . \operatorname{gcd}\left(\mathrm{a}^{(\mathbb{1}-1 / \mathrm{V} \cdot \mathrm{i}}-1, \mathrm{~N}\right)=\operatorname{gcd}\left(\mathrm{a}^{(553-1) / 221}-1, \mathrm{~N}\right)=\operatorname{gcd}\left(2^{2}-1,563\right)=\operatorname{gcd}(3,563)=1$ is true
2. $a^{N-1}=1(\bmod N) \Leftrightarrow 2^{562}=1(\bmod 563)$ is true
3. $F>\sqrt{ }$
$281>\sqrt{563=23.7} \Rightarrow 281>23.7$ is true
As all conditions 1,2 and 3 are all true $\Rightarrow 563$ is for sure a prime number
4. Find a primitive element in $\mathbf{G F}(563$ ) and use it as a public element in ElGamal public key system
(show all necessary computations).
(Stis
${ }^{1} \bmod 563 \neq 1$,
$2^{2}$ mod563 $=1$,
${ }^{281}$ mod563 $=562 \neq$
$\Rightarrow \operatorname{Ord}(2)=562 \Rightarrow$
$\Rightarrow \operatorname{Ord}(2)=562 \Rightarrow a=2$ is primitive element
```
5. Let user A having the secret key \(X_{a}=133\) compute his Signature \(S_{a}\) according to ElGamal signature schem



K has to be invertible \(\bmod N-1, N-1=562\)
gcd \((\mathrm{k}, \mathrm{N}-1]=1=>\) select 89 from the list ( \(\mathrm{k}=22,270,89\) ). As gcd \((562,89)=1\)
\(\mathrm{K}=89,89^{-1}-221\) mod \(562=341\) (see table below)
\(\mathrm{S}=\mathrm{k}^{-1}\left(\mathrm{M}-\mathrm{r} . \mathrm{X}_{\mathrm{a}}\right) \bmod (\mathrm{N}-1)\)
\(=89^{-1}(33-397.133) \bmod 562\)
\(=341(33-52801)\) mod 562
\(=341\). (-52768) mod 562
\(=341 .(-52768) \bmod 562\)


15

3. User A encrypts the message \(\mathrm{M}=33\) and send it to user B who has the secret key \(\mathrm{X}_{b}=70\) by using the random number \(R=17\). Compute \(B\) 's public key \(Y_{b}\) and the encrypted message \(C_{a}\) and \(r\).
Encryption:

4. Decrypt the cryptogram \(\mathrm{C}_{\mathrm{a}}\) on the receiver side B showing all necessary computations, therefore.

\section*{Decryption:}

\(M=C_{a} \cdot Z^{-1}=390 \cdot 143 \bmod 563=33\)

A Massey-Omura lock for Shamir's 3-Pass Protocol over GF \(\left(2^{8}\right)\) using the irreducible polynomial \(\mathrm{p}(\mathrm{x})=\mathrm{x}^{8}+\mathrm{x}^{7}+\mathrm{x}^{3}+\mathrm{x}+1\) as a field modulus is set up.
(Hint: \(2^{8-1}=3 \cdot 5 \cdot 17\) )
1. Write \(p(x)\) in binary form and find out the multiplicative order of \(x\) (by using the list of binary irreducible polynomials).
2. Compute the powers of \(x\) in \(\operatorname{GF}\left(2^{8}\right)\left(x^{9}\right.\) and \(\left.x^{10}\right)\). \(\quad 1,5\)
3. The secret key for users \(A\) and \(B\) are 7 and 13 respectively. A message \(M=x^{8}\) is sent from \(A\) to \(B\). Compute all the exchanged 3-pass messages as powers of \(x\) with smallest possible power of \(x\).
4. Compute the number of possible secret keys in case that the sent clear text message \(M\) was only selected as a power of \(x\). (that is \(M=x^{\prime}\) for some i).
5. What is the maximum number of exponentiation search cycles required to break a message of the form ( \(M=x^{\prime}\) ) ? Why?
3. The secret key for users \(A\) and \(B\) are 7 and 13 respectively. A message \(M=x^{8}\) is sent from \(A\) to \(B\). Compute all the exchanged 3-pass messages as powers of x with smallest possible power of X .
A
Pablic directory:
\(\mathrm{Ea}=7\) as \(\operatorname{gca}\left(2^{2}-1,7\right)=\)
\(\mathrm{Da}=\operatorname{Ea-1}\left(\bmod 2^{8}-1\right)\) \(\mathrm{Da}=\mathrm{Ea-1}(\bmod 255)=73\)
\(\mathrm{Da}=7.1(\bmod 255)\)
Public directory: B \(G F\left(2^{8}\right)\), polynomial \(p(x)=x^{8}+x^{7}+x^{3}+x+1\) \(\mathrm{b}=13\) as \(\operatorname{gcd}\left(2^{8.1,13}\right)=1\) \(\mathrm{Db}=E \mathrm{~b}^{-1}\left(\bmod 2^{8}-1\right)\) \(\mathrm{Db}=13^{-1}(\bmod 255)=-98=-98+255=157\)
As the order of x is 85 , the modulus in the exponents of x is \(85!!!\)


Page 18

> 4. Compute the number of possible secret keys in case that the sent clear text message M was only selected as a power of x . (that is \(\mathrm{M}=\mathrm{x}^{\mathrm{i}}\) for some i ).
> If the attacker knows that the sent messages are powers of x , then the modulus in the exponent is 85 ( 85 is the order \(\begin{aligned} & \text { of } x \text { ). The number of distinct messages is then only } 85 \\ & \text { The cryptographically significant keys are those usable for }\end{aligned}\)
> The cryptographically significant keys are those usable for 85 as a modulus instead of 255 .
> \(\begin{aligned} & \text { The usable keys are those which are invertible modul) } 85 \text {. } \\ & \text { The number of such keys is } \varphi(85)=\varphi(5 \times 17)=(5-1) \text {. }(17-1)=4 \times 16=64 \text { keys. }\end{aligned}\)
> 5. What is the maximum number of exponentiation search cycles required to break a message of the form \(\left(\mathrm{M}=\mathrm{x}^{\prime}\right)\) ? Why?
> As the maximum number of search cycles to compute the discrete logarithm is the maximum order involved in the terms to be attacked. The attacked term in that case is \(x^{\text {i }}\).
> \(\begin{aligned} & \text { The order of any element having the form ( } \mathrm{x}^{\prime} \text { ) for any } \mathrm{i} \text { is }=85 / \mathrm{gcd}(85, i) \text {. The maximum value for the order is for } \\ & \text { such that gcd( } 85, i)=1 \text {. That is the maximum order is } 85 \text { and the maximum number of simple search cycles to get }\end{aligned}\) the discrete logarithm is 85 .
> Breaking a system is reached if the secret key could be found for one encrypted message as \(Y_{1}\) in this example.```

