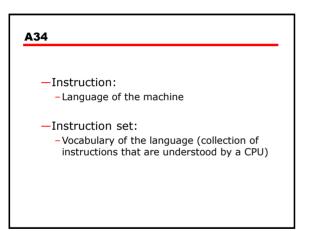
# COMP303 Computer Architecture

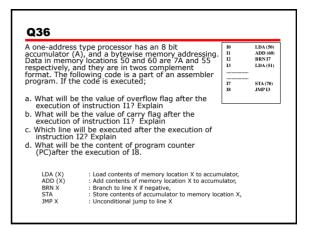

**Some questions & answers** 

#### Prof. Nizamettin AYDIN, PhD <u>naydin@yildiz.edu.tr</u>

http://www.yildiz.edu.tr/~naydin

### Q34

• What is an instruction and instruction set? Explain.




#### Q35

- Consider a stack-based processor with instructions
   PUSH, POP, ADD, SUB , MUL, and DIV.
- Write a program to compute

 $X = (A + B^2)/(D^2 - E)$ 

| • X : | = (A + B <sup>2</sup> ) | /(D² – E | ) |  |
|-------|-------------------------|----------|---|--|
|       | PUSH A                  |          |   |  |
|       | PUSH B                  |          |   |  |
|       | PUSH B                  |          |   |  |
|       | MUL                     |          |   |  |
|       | ADD                     |          |   |  |
|       | PUSH D                  |          |   |  |
|       | PUSH D                  |          |   |  |
|       | MUL                     |          |   |  |
|       | PUSH E                  |          |   |  |
|       | SUB                     |          |   |  |
|       | DIV                     |          |   |  |
|       | POP X                   |          |   |  |



## A36

a. Overflow flag is 1. - Both 7A and 55 are positive. But the result is negative: 7A (01111010) + 55 (01010101) CF (11001111) b. Carry flag will be 0, as there is no carry.

- c. Because the sign flag is 1 (the result is negative), instruction I7 will be executed after the execution of the instruction I2
- d. The program counter content will be I3

| The contents of memory and               |     | Memory | CPU reg | ister |  |  |  |  |  |
|------------------------------------------|-----|--------|---------|-------|--|--|--|--|--|
| CPU registers of a computer              | 100 | 1240   | 101     | PC    |  |  |  |  |  |
| system is given as following             | 101 | 5241   | 0003    | A     |  |  |  |  |  |
| (the values are in hexadecimal).         | 102 | 2241   | 5241    | IR    |  |  |  |  |  |
|                                          |     |        |         |       |  |  |  |  |  |
| What will be the actual operand          | 240 | 0003   |         |       |  |  |  |  |  |
| of the instruction for the;              | 241 | 0343   |         |       |  |  |  |  |  |
|                                          |     |        |         |       |  |  |  |  |  |
| <ul> <li>immediate addressing</li> </ul> | 342 | 0003   |         |       |  |  |  |  |  |
| 5                                        | 343 | 0302   |         |       |  |  |  |  |  |
| direct addressing                        |     |        |         |       |  |  |  |  |  |
| indirect addressing                      |     |        |         |       |  |  |  |  |  |

| A37 |      |  |  |
|-----|------|--|--|
| a.  | 0241 |  |  |
| b.  | 0343 |  |  |
| c.  | 0302 |  |  |
| d.  | 0003 |  |  |
|     |      |  |  |

| Q38                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Assume a stack-based processor that includes<br/>the stack operations PUSH and POP. Arithmetic<br/>operations automatically involve the top one or<br/>two stack elements. Begin with an empty stack.<br/>What stack elements remain after the following<br/>instructions are executed?</li> </ul> |
| PUSH 4                                                                                                                                                                                                                                                                                                      |
| PUSH 7                                                                                                                                                                                                                                                                                                      |
| PUSH 8                                                                                                                                                                                                                                                                                                      |
| ADD                                                                                                                                                                                                                                                                                                         |
| PUSH 10                                                                                                                                                                                                                                                                                                     |
| SUB                                                                                                                                                                                                                                                                                                         |
| MUL                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                             |

| A38                   |                         |  |
|-----------------------|-------------------------|--|
| Instruction<br>PUSH 4 | Stack (top on the left) |  |
|                       | 4                       |  |
| PUSH 7                |                         |  |
|                       | 7,4                     |  |
| PUSH 8                | 8, 7, 4                 |  |
| ADD                   | 0, 7, 4                 |  |
|                       | (8+7=15), 4             |  |
| PUSH 10               |                         |  |
| SUB                   | 10, 15, 4               |  |
| 500                   | (15-10=5), 4            |  |
| MUL                   | (// -                   |  |
|                       | (5×4=20)                |  |

#### Q39

 Compare zero-, one-, two-, and three-address machines by writing programs to compute X = (A + B × C)/(D - E × F) for each of the four machines (0 Address, 1 Address, 2 Address, 3 Address machines).

The instructions available for use are as follows:

| 0 Address | 1 Address | 2 Address                       | 3 Address                       |
|-----------|-----------|---------------------------------|---------------------------------|
| PUSH M    | LOAD M    | MOV (X $\leftarrow$ Y)          | MOV (X $\leftarrow$ Y)          |
| POP M     | STORE M   | ADD $(X \leftarrow X + Y)$      | ADD (X $\leftarrow$ Y + Z)      |
| ADD       | ADD M     | SUB (X $\leftarrow$ X - Y)      | SUB (X ← Y - Z)                 |
| SUB       | SUB M     | $MUL (X \leftarrow X \times Y)$ | $MUL (X \leftarrow Y \times Z)$ |
| MUL       | MUL M     | DIV $(X \leftarrow X / Y)$      | DIV (X $\leftarrow$ Y / Z)      |
| DIV       | DIV M     |                                 |                                 |

| <b>A39</b><br>X = (A                                                                                                                         | + B × C),                                                                                                                                         | /(D – E × F)                                                                                                                                                                                         |                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 0 Address<br>(Stack Machines)<br>PUSH A<br>PUSH B<br>PUSH C<br>MUL<br>ADD<br>PUSH D<br>PUSH E<br>PUSH F<br>MUL<br>SUB<br>SUB<br>DIV<br>POP X | 1 Address<br>(Accumulator<br>Machine)<br>LOAD E<br>MUL F<br>STORE T<br>LOAD D<br>SUB T<br>STORE T<br>LOAD B<br>MUL C<br>ADD A<br>DIV T<br>STORE X | 2 Address<br>(Memory-Memory, or<br>Register-register<br>Machine)<br>MOV R0, E<br>MUL R0, F<br>MUL R0, F<br>MOV R1, D<br>SUB R1, R0<br>MOV R0, B<br>MUL R0, C<br>ADD R0, A<br>DIV R0, R1<br>MOV X, R0 | 3 Address<br>Load-Store<br>MUL R0, E, F<br>SUB R0, D, R0<br>MUL R1, B, C<br>ADD R1, A, R1<br>DIV X, R0, R1 |

#### Q40

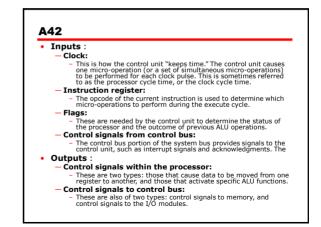
- Assume a pipeline with 4 stages: —fetch instruction (FI),
  - -decode instruction and calculate addresses (DA),
  - -fetch operand (FO), and
  - -execute (EX).
- Draw the pipelinening diagram for a sequence of 7 instructions, in which the third instruction is a branch to instruction 15 that is taken and in which there are no dependencies.

|     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|-----|---|---|---|---|---|---|---|---|---|----|-----|----|----|----|----|----|----|----|----|----|
| I1  |   |   |   |   |   |   |   |   |   |    | I1  | FI | DA | FO | EX |    |    |    |    |    |
| I2  |   |   |   |   |   |   |   |   |   |    | I2  |    | FI | DA | FO | EX |    |    |    |    |
| 13  |   |   |   |   |   |   |   |   |   |    | 13  |    |    | FI | DA | FO | ΕX |    |    |    |
| I4  |   |   |   |   |   |   |   |   |   |    | I4  |    |    |    | FI | DA | FO |    |    |    |
| 15  |   |   |   |   |   |   |   |   |   | +  | 15  |    |    |    |    | FI | DA |    |    |    |
| 16  |   |   |   |   |   | - |   | - |   | -  | 16  |    |    |    |    |    | FI |    |    |    |
| I15 |   |   | - |   | - | + |   |   | - | -  | I15 |    |    |    |    |    |    | FI | DA | FC |

#### Q41

- A pipelined processor has a clock rate of 2.5 GHz and executes a program with
  - 1.5 million instructions.
  - The pipeline has five stages, and instructions are issued at a rate of one per clock cycle.
  - Ignore penalties due to branch instructions and out-of-sequence executions.

What is the speedup of this processor for this program compared to a nonpipelined processor?


## A41

We can ignore the initial filling up of the pipeline and the final emptying of the pipeline, because this involves only a few instructions out of 1.5 million instructions.

Therefore the speedup is a factor of five.

### Q42

 Provide a typical list of the inputs and outputs of a control unit.



### Q43

- Your ALU can add its two input registers, and it can logically complement the bits of either input register, but it cannot subtract.
- Numbers are to be stored in two's complement representation.
- List the micro-operations your control unit must perform to cause a subtraction.

#### A43

• Consider the instruction SUB R1, X, which subtracts the contents of location X from the contents of register R1, and places the result in R1.

| • | t1: | MAR $\leftarrow$ | (IR(address))   |
|---|-----|------------------|-----------------|
| • | t2: | MBR $\leftarrow$ | Memory          |
| • | t3: | MBR $\leftarrow$ | Complement(MBR) |
| • | t4: | MBR $\leftarrow$ | Increment(MBR)  |
| • | t5: | R1 ←             | (R1) + (MBR)    |
|   |     |                  |                 |