COMP303 Computer Architecture

Some questions & answers

Prof. Nizamettin AYDIN, PhD <u>naydin@yildiz.edu.tr</u>

http://www.yildiz.edu.tr/~naydin

Q1

• What are the four main components of any general-purpose microprocessor?

A1 -A memory (register), - which stores both data and instructions: -An arithmetic and logic unit (ALU) - capable of operating on binary data; -A control unit, - which interprets the instructions in memory and causes them to be executed;

- -Input and output (I/O) equipment
 - operated by the control unit.

Q2

• At the integrated circuit level, what are the three principal constituents of a computer system?

A2 —Gates, —Memory cells —Interconnections among gates and memory cells

Q3

• List and explain the key characteristics of a computer family.

In going from lower to higher family members.

Q4

• Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of two fields:

The first byte contains the opcode and the remainder the immediate operand or an operand address.

- —a. What is the maximum directly addressable memory capacity (in bytes)?
- -b. How many bits are needed for the program counter and the instruction register?

A4

- **a.** Address field of the instruction is 24 bits.
 - Therefore the total memory capacity is $2^{24} = 2^4 \times 2^{20} = 16$ Mbytes - (2^{20} is 1 Mega)
- **b.** Because the address field of the instruction is 24 bits,
 - -The program counter must be at least 24 bits.
 - -If the instruction register is to contain the whole instruction, it will have to be 32-bits long

Q5

Consider a 32-bit microprocessor, with a 16bit external data bus, driven by an 8-MHz input clock.

Assume that this microprocessor has a bus cycle whose minimum duration equals four input clock cycles.

-What is the maximum data transfer rate that this microprocessor can sustain?

45 -Clock cycle = 1/Clock frequency Clock cycle = 1/8 MHz = $0.125 \times 10^{-6} \text{ s}$ = $125 \times 10^{-9} \text{ s} = 125 \text{ ns}$ -Bus cycle = number of clocks x Clock cycle Bus cycle = $4 \times 125 \text{ ns} = 500 \text{ ns}$ -2 bytes transferred every 500 ns; thus -transfer rate = $2/(500 \times 10^{-9}) = 2/(5 \times 10^{-7})$ = $0.4 \times 10^7 = 4 \text{ MBytes/sec}$

Q6

An 8 bit microprocessor system has 9 address lines to address relevant memory locations.

- a. Assuming that the data size is 1 byte, what is the address of the last memory location?
- b. Design the required memory system using memory chips organized as 256x8 bits.

A7 a. $(19.75)_{10} = (10011.11)_2$ b. $(19.75)_{10} = (0001\ 0011.1100)_2 = (13.C)_{16}$ c. $(19.75)_{10} = (10011.11)_2 => (1.001111 \times 2^{00100})$ biased exponential format = $(1.001111 \times 2^{00101})$ biased exponential format = $(1.001111 \times 2^{10011})$

S = 0, BE = 10011, M = 0011110000

(19.75)₁₀=(0 10011 0011110000)_{float}

Q8

• A given microprocessor has words of one byte.

What is the smallest and largest integer that can be represented in the following representation?

- a. Unsigned
- b. Sign magnitude
- c. Ones complement
- d. Twos complement
- e. Binary coded decimal

A 8	
The w	ord size is 1 byte (8 bits). So,
а.	0; 255
b.	-127; 127
с.	-127; 127
d.	-128; 127
e.	00; 99

Q9

- In a signed (2s complement number system) addition, if the "carry in" and the "carry out" of the sign bit differ, there is an overflow.
 - a. Determine whether there is an overflow in the following operations or not. (use 4 bit 2s complement numbers)

```
4+3; -7-6; 5+7; -3-2
```

b. Design a circuit that whenever an overflow happens the output becames 1, otherwise 0.

 If the sign b 	" <mark>ca</mark> it d	<mark>rry in</mark> " iffer, t	' an here	d the ' e is an	°car ov	ry out erflow	" of	f the
operation		4+3		-7-6		5+7		-3-2
Carry in		0		0		1		1
		0100		1001		0101		1101
	+	0011	+	1010	+	0111	+	1110
Result		0 111		0011		1100		1 011
Cary out	0		1		0		1	
overflow		no		yes		yes		no

