Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

Computer Architecture

Operating System Support

Outline

+ Objectives and Functions of OS
« Operating System Services
» Types of Operating System
Interactive
Batch
Single program
— Multi-programming
* Scheduling
— Long Term Scheduling
Medium Term Scheduling
Short Term Scheduler
« Swapping
« Partitioning
+ Relocation
« Paging
» Virtual Memory
+ Segmentation

Operating System

. CPU Main Memary
« A computer consists of - o
modules of three basic =" —
. —Tema—]
types that communicate ==
with each other. -
VO BR e
CPU
VO Module n-2
Memory
— Input/Output
-
Tutters. ‘:‘

« Management of these
modules is done by OS.

Objectives and Functions of OS

« Convenience

use

« Efficiency

resources

— An operating system makes a computer easier to

— An operating system allows better use of computer

Layers and Views of a Computer System

End
User
Programmer
Application Programs Operating-
System
Designer
Utilities
Operating System
Computer Hardware

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Operating System Services

 Program creation
 Program execution

Access to 1/0 devices
Controlled access to files

» System access

Error detection and response
+ Accounting

OIS as a Resource Manager

A computer is a set of resources for the
movement, storage, and processing of data and
for the control of these functions

The OIS is responsible for managing these
resources

O/S is a program executed by the processor

The O/S frequently relinquishes control and
must depend on the processor to allow it to
regain control

Computer System

1/0 Devices

Memory

Operating LO Controlle
stem

Syste

Software 1O Controlle

Programs
and Data

Processor. e ss [Procesor |

Main Resources managed by the O/S

Types of Operating System

Interactive

User/programmer interacts directly with the
computer through a keyboard/display terminal

Batch

— Opposite of interactive. Rare

Single program (Uni-programming)
— Works only one program at atime
Multi-programming (Multi-tasking)

— Processor works on more than one program at a
time

Early Systems

+ Late 1940s to mid 1950s
No Operating System
— Programs interact directly with hardware
» Two main problems:
— Scheduling:
Setup time

Simple Batch Systems

Resident Monitor program
Users submit jobs to operator
Operator batches jobs

Monitor controls sequence of events to process
batch

When one job is finished, control returns to
Monitor which reads next job

Monitor handles scheduling

Copyright 2000 N. AYDIN. All rights
reserved.

Memory Layout for Resident Monitor

Interrupt
Processing

Device
Drivers
Monitor

Job
Sequencing

[Control Language|

Interpreter
Boundary »

User
Program
Area

Job Control Language

« Instructions to Monitor

« Usually denoted by $
. eg.
- $JOB
- $FTN
- Some Fortran instructions
- $LOAD
- $RUN
- .. Some data
—$END

Desirable Hardware Features

« Memory protection
— To protect the Monitor
» Timer
— To prevent a job monopolizing the system
* Privileged instructions
— Only executed by Monitor
—eg. /O
* Interrupts
— Allows for relinquishing and regaining control

Multi-programmed Batch Systems

» 1/O devices very slow
» When one program is waiting for 1/0, another can use the CPU

« Following illustrates the problem:

the calculation concerns a program that processes a file of records and
performs, on average, 100 processor instructions per record.

+ In this example the computer spends over 96% of its time waiting for 1/0 devices to
finish transferring data.

System utilization example

Read one record from file 15 us

Execute 100 instructions 1us
Write one record to file 15 us
TAL 31l us

Percent CPU utilization = % =0.032-3.2%

Single vs Multi-Programming

« Single program

Run Wait Run Wait

Time

» Multi-Programming with two programs

Program A Run Wait Run Wait

Program B Wait Run Wait Run Wait
. Run | Run . Run | Run .

Combined A B Wait A B Wait

Time

Single vs Multi-Programming

+ Multi-Programming with Three Programs

Run Wait Run Wait

Program A

Program B Wailw Wait w Wait
Program C Wait % Wait % Wail
Combined WW Wait WW Wait

Time

Copyright 2000 N. AYDIN. All rights
reserved.

Example- benefits of mutiprogramming

« Consider a computer with 250 MBytes of memory, a
disk, a terminal, and a printer.

» The programs JOB1, JOB2, and JOB3 are submitted for
execution at the same time with the following attributes:

JOB1 JoB: JOB3
Type of job Heavy compute Heavy U0 Heavy 110
Duration § min 15 min 10 min
Memory required oM 100 M B0M
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

» We assume minimal processor requirements for JOB2
and JOB3 and continuous disk and printer use by JOB3.

« For a simple batch environment, these jobs will be
executed in sequence

Utilization histograms

100%

[T]
o hstory [gt 1082 wom |
a 5 10 15 20 25 a0
Minues
—_—
Time
(@) Unipr {b) Multiprog

Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Time Sharing Systems

« Allow users to interact directly with the
computer
—i.e. Interactive

Processor use 20% 40%
Memory use 33% 67% H H
o o i . Mgltl-progrza_mmlng allows a number of users
Fifitires 33% 1% to interact with the computer
Elapsed time 30 min 15 min
Throughput rate 6 jobs/hr 12 jobs/he
Mean response time 18 min 10 min
Scheduling Long Term Scheduling

 Scheduling is key to multi-programming
* Aprocessis:

A program in execution

The “animated spirit” of a program

That entity to which a processor is assigned

» Types of scheduling:

Long-term scheduling The decision to add to the pool of processes to be executed

Medium-term scheduling The decision o add to the number of processes that are
partially or fully in main memory

Short-term scheduling The decision as to which available process will be executed
by the processor

LO scheduling The decision as to which process's pending 1O request
shall be handled by an available VO device

» Determines which programs are submitted for
processing

* i.e. controls the degree of multi-programming

+ Once submitted, a job becomes a process for
the short term scheduler

* (or it becomes a swapped out job for the
medium term scheduler)

Copyright 2000 N. AYDIN. All rights
reserved.

Medium Term Scheduling

* Part of the swapping function (later...)

+ Usually based on the need to manage multi-
programming

* If no virtual memory, memory management is
also an issue

Short Term Scheduler

Also known as Dispatcher, executes frequently and
malées the fine grained decisions of which jobto execute
nex
— i.e. which job actually gets to use the processor in the next
time slot
5 define states in a process state:
— New:
+ A program is admitted by the high-level schedular but is not yet
ready to execute
— Ready:
« The process is ready to execute
— Running:
* The prcess is being executed
— Waiting:
« The process is suspended, waiting for some system resources
— Halted:
« The process has terminated and will be destroyed by the O/S.

Five State Process Model

= »

Blocked

Process Control Block

Identifier

State

Priority

Program counter

Memory pointers

Context data

/O status
information

Accounting
information

Scheduling Example

(Operating system Operating system Operating system
Sz
= control =
TN [1
[Scheduer (Scneduer | [Schoduter]
Inmupt naner | [Cinermupt nanaer | interrupt nandie |

)) A
“Running” “Waiting’ “Wailing"

B 5]
“Ready” “Ready” “Running’

$ist
A

‘Other partibans ‘Other partitions Othar partitons

Key Elements of O/S for Multiprogramming

1

Long- Short- VO

Operating System

Sel
Cal
Handler (code)

Service Call
from Process

Interrupt
from Process Interrupt Term Term Queues
Interrupt Handler (cade) Queue Quene
from 10 Short-Term
Scheduler
(code)
Pass Control
to Process

Copyright 2000 N. AYDIN. All rights
reserved.

Queuing Diagram Representation of Process Scheduling

Long-term Short-term

ueue ueue —
Admit kl kl End
—_ 111117 [TTTTT .
-

Vo1

-—
Occurs

1/0 1 Quene

Vo2
Occurs
1/0 2 Quene

Von
Ocaurs
1O Quene

Memory Management

Task of dynamically subdivison of memory
Effective memory management is vital in a
multiprogramming system

Uni-program

— Memory split into two

— One for Operating System (monitor)

— One for currently executing program
Multi-program

— “User” part is sub-divided and shared among active
processes

Swapping

» Problem:

—1/O is so slow compared with CPU that even in
multi-programming system, CPU can be idle most
of the time

« Solutions:
— Increase main memory
* Expensive
« Leads to larger programs
— Swapping

What is Swapping?

Long term queue of processes stored on disk
Processes “swapped” in as space becomes
available

As a process completes it is moved out of main
memory

If none of the processes in memory are ready
(i.e. all /O blocked)

— Swap out a blocked process to intermediate queue
— Swap in a ready process or a new process

— But swapping is an I/O process...

Use of Swapping

Main
memory
Operating
system

Disk storage

__ Completed jobs

and user sessions

Disk storage

Long-term . -
quee

by Swapping

Partitioning

Splitting memory into sections to allocate to
processes (including Operating System)
Fixed-sized partitions

May not be equal size

— Process is fitted into smallest hole that will take it
(best fit)

Some wasted memory
— Leads to variable sized partitions

Copyright 2000 N. AYDIN. All rights
reserved.

Fixed Partitioning

Operating System Operating System
[sm

6 M

Variable Sized Partitions (1)

Allocate exactly the required memory to a
process

This leads to a hole at the end of memory, too
small to use

— Only one small hole - less waste

When all processes are blocked, swap out a
process and bring in another

New process may be smaller than swapped out
process

Another hole

Variable Sized Partitions (2)

« Eventually have lots of holes
— (fragmentation)
+ Solutions:

— Coalesce
« Join adjacent holes into one large hole
— Compaction

into one free block (c.f. disk de-fragmentation)

 From time to time go through memory and move all hole

Effect of Dynamic Partitioning

T L i [OperwmE | ! [Operamm |

40,

Relocation

» No guarantee that process will load into the
same place in memory

Instructions contain addresses

Locations of data
Addresses for instructions (branching)
Logical address

relative to beginning of program
Physical address
— actual location in memory (this time)
Automatic conversion using base address

Paging

Split memory into equal sized, small chunks -
page frames

Split programs (processes) into equal sized
small chunks - pages

Allocate the required number page frames to a
process

Operating System maintains list of free frames

A process does not require contiguous page
frames

Use page table to keep track

a2

Copyright 2000 N. AYDIN. All rights
reserved.

Main Main
memory memory
Page 1
13 13 of A
Page 2|
14 14700
Page 3
15 15 of A
in in
16 use it use
Free frame list - Free frame list ‘
13 n 20 n
14 7| usa 7| use
15 Process A
18 18 page table T e
of A
20
n In
1] oo 1| uee
20 E 20
(a) Before (b) After

Logical and Physical Addresses - Paging

Main
Memory

Page 0
of A

page relative address page relative address Page i

of A

Page 2
of A

Page3
of A

Process A
Page Table

4]

Virtual Memory

Demand paging

— Do not require all pages of a process in memory
— Bring in pages as required

Page fault

— Required page is not in memory

— Operating System must swap in required page
— May need to swap out a page to make space

— Select page to throw out based on recent history

Thrashing

« Too many processes in too little memory

« Operating System spends all its time swapping
« Little or no real work is done

« Disk light is on all the time

+ Solutions
— Good page replacement algorithms
— Reduce number of processes running
— Fit more memory

46,

Bonus

itto run
» We can swap in pages as required

than total memory available!
» Main memory is called real memory

virtual memory

* We do not need all of a process in memory for

» S0 - we can now run processes that are bigger

 User/programmer sees much bigger memory -

Inverted Page Table Structure

Virtual address

21 [Frame f ofmset |
i

"
Real address

48,

Copyright 2000 N. AYDIN. All rights
reserved.

Translation Lookaside Buffer

« Every virtual memory reference causes two
physical memory access
— Fetch page table entry
— Fetch data
* Use special cache for page table
- TLB

TLB Operation

Page Tables
T Upastea

TLB and Cache Operation

TLE Operation

Virual Address
e # | Offset
e < ILB
TLE miss
TLB
hit Cache Operation
;\ Real Adress
{Tag| kerminder = Hit | value
—
Miss
s
Page Table

Segmentation

« Paging is not (usually) visible to the
programmer

« Segmentation is visible to the programmer

« Usually different segments allocated to
program and data

< May be a number of program and data
segments

Advantages of Segmentation

« Simplifies handling of growing data structures

« Allows programs to be altered and recompiled
independently, without re-linking and re-
loading

* Lends itself to sharing among processes

« Lends itself to protection

» Some systems combine segmentation with
paging

Pentium 11

Hardware for segmentation and paging
Unsegmented unpaged
— virtual address = physical address
Low complexity
— High performance
* Unsegmented paged
Memory viewed as paged linear address space
— Protection and management via paging
Berkeley UNIX
+ Segmented unpaged
— Collection of local address spaces
Protection to single byte level
— Translation table needed is on chip when segment is in memory
« Segmented paged
— Segmentation used to define logical memory partitions subject to access control
— Paging manages allocation of memory within partitions
Unix System V

Copyright 2000 N. AYDIN. All rights
reserved.

Pentium Il Address Translation Mechanism

Logieal Address

Physical
D Address

Main Memary

Segmentation

Pentium Il Segmentation

+ Each virtual address is 16-bit segment and 32-
bit offset

+ 2 bits of segment are protection mechanism

* 14 bits specify segment

 Unsegmented virtual memory 232 = 4 Ghytes

« Segmented 246 = 64 terabytes
— Can be larger — depends on which process is active
— Half (8K segments of 4 Gbytes) is global
— Half is local and distinct for each process

Pentium 11 Protection

« Protection bits give 4 levels of privilege
— 0 most protected, 3 least
— Use of levels software dependent

— Usually level 3 for applications, level 1 for O/S and
level O for kernel (level 2 not used)

— Level 2 may be used for apps that have internal
security e.g. database

— Some instructions only work in level 0

Pentium 11 Paging

» Segmentation may be disabled
— In which case linear address space is used
» Two level page table lookup
First, page directory
+ 1024 entries max

« Splits 4G linear memory into 1024 page groups of 4Mbyte
« Each page table has 1024 entries corresponding to 4Kbyte
pages
« Can use one page directory for all processes, one per process
or mixture
« Page directory for current process always in memory
— Use TLB holding 32 page table entries

— Two page sizes available 4k or 4M

PowerPC Memory Management Hardware

+ 32 bit — paging with simple segmentation
64 bit paging with more powerful segmentation
« Or, both do block address translation
— Map 4 large blocks of instructions & 4 of memory to
bypass paging
— e.g. OS tables or graphics frame buffers
« 32 bit effective address
12 bit byte selector
+ =4kbyte pages
— 16 bit page id
« 64k pages per segment
4 bits indicate one of 16 segment registers
« Segment registers under OS control

PowerPC 32-bit Memory Management Formats

[o 5
Segment | Page | Byle

{a) Effedive address

o T 7|
V] Vittual Segment 1) (VSID) Hl Avl I
Real Page Number | |R|(‘ WIMG e I
d TR TR &L |
V= Enmy validbit B = Referenced bit [J=reserved
H = Hash fimction identifier C = Changed bit

API = Abbreviated page index WIMG = Cache and sicrage access control bis
¥ = Page prolection bils

Bl
(h) Page Table Entry

£ 1073 5
Real Page Number | Byte Offset

(€] Real address

Copyright 2000 N. AYDIN. All rights
reserved.

10

PowerPC 32-bit Address Translation

Copyright 2000 N. AYDIN. All rights
reserved.

11

