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Parallel Processing

• The computer is viewed as a sequential

machine

• This view of the computer has never been

entirely true.

– At the micro-operation level, multiple control

signals are generated at the same time

– In instruction pipelining, fetch and execute stages

overlap

– In superscalar, there is instruction level parallelizm
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Parallel Processing

• Computer technology has evolved

• Cost of hardware has dropped

• Designers have sought more and more
opportunities for parallelism ...
– to enhance performance

– to increase availability

• Some approaches:
– Symmetric multiprocessors (SMPs)

– Clusters

– Multithreaded processors

– Chip multiprocessors

– Nonuniform memory access (NUMA) machines
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Multiple Processor Organization

• Categorization of systems with parallel processing capability:
– Single instruction, single data stream – SISD

• A single processor executes a single stream to operate on data stored in a 
single memory

• Uniprocessors fall into this category

– Single instruction, multiple data stream – SIMD

• A single machine instruction controls the simultaneous execution of a 
number of processing elements

• Vector and array processors fall into this category

– Multiple instruction, single data stream – MISD

• A sequence of data is transmitted to a set of processors, each of which
executes a different instruction sequence

• Not comercially implemented

– Multiple instruction, multiple data stream- MIMD

• A set of processors simultaneously execute different instruction sequences
on different data sets.

• SMPs, clusters, and NUMA systems fit into this category
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Taxonomy of Parallel Processor Architectures
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Multiple instruction, multiple data stream- (MIMD) - Overview

• Processors are general purpose 

– Each can process all instructions necessary

• Further classified by method of processor 

communication:

– Shared memory (Tightly coupled)

• Symmetric multiprocessor (SMP)

• Nonuniform memory access (NUMA)

– Distributed memory (Loosely coupled)

• clusters
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Tightly Coupled - SMP

• Processors share memory

• Communicate via that shared memory

• Symmetric Multiprocessor (SMP)

– Share single memory or pool

– Shared bus to access memory

– Memory access time to given area of memory is 
approximately the same for each processor

• The operating system takes care of scheduling
of threads or processes on individiual
processors and of synchronization among
processors

9

Tightly Coupled - NUMA

• Nonuniform memory access

• Access times to different regions of memory 

may differ for a NUMA processor
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Loosely Coupled - Clusters

• Collection of independent uniprocessors or 

SMPs

• Interconnected to form a cluster

• Communication via fixed path or network 

connections
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Multiple Processor Organization

12



Copyright 2000 N. AYDIN. All rights 

reserved. 3

Symmetric Multiprocessors

• A stand alone computer with the following 

characteristics
– Two or more similar processors of comparable capacity

– Processors share same memory and I/O

– Processors are connected by a bus or other internal connection

– Memory access time is approximately the same for each processor

– All processors share access to I/O

• Either through same channels or different channels giving paths to same 

devices

– All processors can perform the same functions (hence symmetric)

– System controlled by integrated operating system

• providing interaction between processors 

• Interaction at job, task, file and data element levels
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Multiprogramming and Multiprocessing
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Potential SMP Advantages

• Performance

– If some work can be done in parallel

• Availability

– Since all processors can perform the same functions, 

failure of a single processor does not halt the system

• Incremental growth

– User can enhance performance by adding additional 

processors

• Scaling

– Vendors can offer range of products based on number 

of processors
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Block Diagram of Tightly Coupled Multiprocessor

• Each processor... 
– is self contained

• has ALU, 
registers, cache, 
etc.

– has access to shared
main memory

– has access to I/O 
devices through
some form of 
interconnection
mechanism

• Simultaneous
access to seperate
blocks in memory is 
possible
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Organization Classification

• Time shared or common bus

• Multiport memory

• Central control unit
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Time Shared Bus

• Simplest form

• Structure and interface similar to single 

processor system

• Following features provided

– Addressing - distinguish modules on bus 

– Arbitration - any module can be temporary master

– Time sharing - if one module has the bus, others 

must wait and may have to suspend

• Now have multiple processors as well as 

multiple I/O modules
18
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Symmetric Multiprocessor Organization
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Time Share Bus - Advantages - Disadvantage

• Advantages:

– Simplicity

– Flexibility

– Reliability

• Disadvantages:

– Performance limited by bus cycle time

– Each processor should have local cache

• Reduce number of bus accesses

– Leads to problems with cache coherence

20

Operating System Issues

• An SMP OS manages processor and other
computer resources

• A multiprocessor OS must provide all the
functionality of a multiprogramming system
plus additional features to accomodate multiple
processors. 

• So, the key design issues are the following:
– Simultaneous concurrent processes

– Scheduling

– Synchronization

– Memory management

– Reliability and fault tolerance
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A Mainframe SMP - IBM zSeries

• Uniprocessor with one main memory card to a high-end system with 48 processors 
and 8 memory cards

• Dual-core processor chip
– Each includes two identical central processors (CPs)

– CISC superscalar microprocessor

– Mostly hardwired, some vertical microcode

– 256-kB L1 instruction cache and a 256-kB L1 data cache

• L2 cache 32 MB
– Clusters of five

– Each cluster supports eight processors and access to entire main memory space

• System control element (SCE)
– Arbitrates system communication

– Maintains cache coherence

• Main store control (MSC)
– Interconnect L2 caches and main memory

• Memory card
– Each 32 GB, Maximum 8 , total of 256 GB

– Interconnect to MSC via synchronous memory interfaces (SMIs)

• Memory bus adapter (MBA)
– Interface to I/O channels, go directly to L2 cache
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IBM z990 Multiprocessor Structure Cache Coherence and MESI Protocol

• MESI (Modified/Exclusive/Shared/Invalid)

• Problem - multiple copies of same data in 

different caches

• Can result in an inconsistent view of memory

• Write back policy can lead to inconsistency

• Write through can also give problems unless 

caches monitor memory traffic
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Software Solutions

• Compiler and operating system deal with 

problem

• Overhead transferred to compile time

• Design complexity transferred from hardware 

to software

• However, software tends to make conservative 

decisions

– Inefficient cache utilization

• Analyze code to determine safe periods for 

caching shared variables
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Hardware Solution

• Cache coherence protocols

• Dynamic recognition of potential problems

• Run time

• More efficient use of cache

• Transparent to programmer

• Directory protocols

• Snoopy protocols
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Directory Protocols

• Collect and maintain information about copies 

of data in cache

• Directory stored in main memory

• Requests are checked against directory

• Appropriate transfers are performed

• Creates central bottleneck

• Effective in large scale systems with complex 

interconnection schemes
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Snoopy Protocols

• Distribute cache coherence responsibility 

among cache controllers

• Cache recognizes that a line is shared

• Updates announced to other caches

• Suited to bus based multiprocessor

• Increases bus traffic

• Two basic approaches:

– Write-invalidate

– Write-update (write broadcast)
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Write Invalidate

• Multiple readers, one writer

• When a write is required, all other caches of 

the line are invalidated

• Writing processor then has exclusive (cheap) 

access until line required by another processor

• Used in Pentium II and PowerPC systems

• State of every line is marked as Modified, 

Exclusive, Shared or Invalid

• Therefore also called MESI
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Write Update

• Multiple readers and writers

• Updated word is distributed to all other 

processors

• Some systems use an adaptive mixture of both 

solutions

30
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MESI State Transition Diagram
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Multithreading and Chip Multiprocessors

• Processor performance can be measured by the 
rate at which it executes instructions
– MIPS rate = f * IPC

• f processor clock frequency, in MHz

• IPC is average instructions per cycle

• MIPS, million instructions per second

• Increase performance by increasing clock 
frequency and increasing instructions that 
complete during cycle

• May be reaching limit
– Complexity 

– Power consumption
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Multithreading and Chip Multiprocessors

• In multithreading:

– Instruction stream divided into smaller streams 

(threads)

• Threads can be executed in parallel

• Wide variety of multithreading designs

• Thread in multithreaded processors may or 

may not be the same as software threads.
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Definitions of Threads and Processes

• Some important terms are:
– Process: 

• An instance of program running on a computer, which embodies two key
characteristics:

– Resource ownership

• Virtual address space to hold process image

– Scheduling/execution

– Process switch: 

• An operation that switches the processor from one process to another

– Thread: A dispatchable unit of work within process

• Includes processor context (which includes the program counter and stack 
pointer) and data area for stack

• Thread executes sequentially

• Interruptible: processor can turn to another thread

– Thread switch

• Switching processor between threads within same process

• Typically less costly than process switch
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Implicit and Explicit Multithreading

• All commercial processors and most 
experimental ones use explicit multithreading

– Concurrently execute instructions from different 
explicit threads

– Interleave instructions from different threads on 
shared pipelines or parallel execution on parallel 
pipelines

• Implicit multithreading is concurrent execution 
of multiple threads extracted from single 
sequential program

– Implicit threads defined statically by compiler or 
dynamically by hardware
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Approaches to Explicit Multithreading

• Interleaved

– Fine-grained

– Processor deals with two or more thread contexts at a time

– Switching thread at each clock cycle

– If thread is blocked it is skipped

• Blocked 

– Coarse-grained 

– Thread executed until event causes delay

– E.g.Cache miss

– Effective on in-order processor

– Avoids pipeline stall

• Simultaneous (SMT)

– Instructions simultaneously issued from multiple threads to execution units of 
superscalar processor

• Chip multiprocessing

– Processor is replicated on a single chip

– Each processor handles separate threads

36
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Scalar Processor Approaches

• Single-threaded scalar
– Simple pipeline 

– No multithreading

• Interleaved multithreaded scalar
– Easiest multithreading to implement

– Switch threads at each clock cycle

– Pipeline stages kept close to fully occupied

– Hardware needs to switch thread context between 
cycles

• Blocked multithreaded scalar
– Thread executed until latency event occurs

– Would stop pipeline

– Processor switches to another thread
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Scalar Diagrams
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Multiple Instruction Issue Processors (1)

• Superscalar

– No multithreading

• Interleaved multithreading superscalar:

– Each cycle, as many instructions as possible issued 

from single thread

– Delays due to thread switches eliminated

– Number of instructions issued in cycle limited by 

dependencies

• Blocked multithreaded superscalar

– Instructions from one thread

– Blocked multithreading used
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Multiple Instruction Issue Diagram (1)

40

Multiple Instruction Issue Processors (2)

• Very long instruction word (VLIW)
– E.g. IA-64

– Multiple instructions in single word

– Typically constructed by compiler

– Operations that may be executed in parallel in same 
word

– May pad with no-ops

• Interleaved multithreading VLIW
– Similar efficiencies to interleaved multithreading on 

superscalar architecture

• Blocked multithreaded VLIW
– Similar efficiencies to blocked multithreading on 

superscalar architecture
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Multiple Instruction Issue Diagram (2)
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Parallel, Simultaneous Execution of Multiple Threads

• Simultaneous multithreading

– Issue multiple instructions at a time

– One thread may fill all horizontal slots

– Instructions from two or more threads may be issued

– With enough threads, can issue maximum number of 

instructions on each cycle

• Chip multiprocessor

– Multiple processors

– Each has two-issue superscalar processor

– Each processor is assigned thread

• Can issue up to two instructions per cycle per thread
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Parallel Diagram
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Examples

• Some Pentium 4

– Intel calls  it hyperthreading

– SMT with support for two threads

– Single multithreaded processor, logically two 
processors

• IBM Power5 

– High-end PowerPC

– Combines chip multiprocessing with SMT

– Chip has two separate processors

– Each supporting two threads concurrently using 
SMT
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Power 5 Instruction Data Flow
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Clusters

• Alternative to SMP
– High performance

– High availability

– Server applications

• A group of interconnected whole computers
– Working together as unified resource

– Illusion of being one machine

– Each computer called a node

• Cluster Benefits:
– Absolute scalability

– Incremental scalability

– High availability

– Superior price/performance
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Cluster Configurations
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Standby Server, No Shared Disk

Shared Disk
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Operating Systems Design Issues

• Failure Management

– High availability

– Fault tolerant

– Failover

• Switching applications & data from failed system to alternative within 

cluster

– Failback

• Restoration of applications and data to original system

• After problem is fixed

• Load balancing

– Incremental scalability

– Automatically include new computers in scheduling

– Middleware needs to recognise that processes may switch between 

machines
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Parallelizing

• Single application executing in parallel on a 
number of machines in cluster
– Complier

• Determines at compile time which parts can be executed in 
parallel

• Split off for different computers

– Application
• Application written from scratch to be parallel
• Message passing to move data between nodes
• Hard to program
• Best end result

– Parametric computing
• If a problem is repeated execution of algorithm on different 

sets of data
• e.g. simulation using different scenarios
• Needs effective tools to organize and run
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Cluster Computer Architecture
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Cluster Middleware

• Unified image to user
– Single system image

• Single point of entry

• Single file hierarchy

• Single control point

• Single virtual networking

• Single memory space

• Single job management system

• Single user interface

• Single I/O space

• Single process space

• Checkpointing

• Process migration
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Cluster vs SMP

• Both provide multiprocessor support to high 
demand applications.

• Both available commercially
– SMP for longer

• SMP:
– Easier to manage and control
– Closer to single processor systems

• Scheduling is main difference
• Less physical space
• Lower power consumption

• Clustering:
– Superior incremental & absolute scalability
– Superior availability

• Redundancy

53

Nonuniform Memory Access (NUMA)

• Alternative to SMP & clustering

• Uniform memory access
– All processors have access to all parts of memory

• Using load & store

– Access time to all regions of memory is the same

– Access time to memory for different processors same

– As used by SMP

• Nonuniform memory access
– All processors have access to all parts of memory

• Using load & store

– Access time of processor differs depending on region of memory

– Different processors access different regions of memory at different 
speeds

• Cache coherent NUMA
– Cache coherence is maintained among the caches of the various 

processors

– Significantly different from SMP and clusters

54
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Motivation

• SMP has practical limit to number of processors

– Bus traffic limits to between 16 and 64 processors

• In clusters each node has own memory

– Apps do not see large global memory

– Coherence maintained by software not hardware

• NUMA retains SMP flavour while giving large scale 

multiprocessing

– e.g. Silicon Graphics Origin NUMA 1024 MIPS R10000 

processors

• Objective is to maintain transparent system wide 

memory while permitting multiprocessor nodes, each 

with own bus or internal interconnection system
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CC-NUMA Organization

56

CC-NUMA Operation

• Each processor has own L1 and L2 cache

• Each node has own main memory

• Nodes connected by some networking facility

• Each processor sees single addressable memory 
space

• Memory request order:
– L1 cache (local to processor)

– L2 cache (local to processor)

– Main memory (local to node)

– Remote memory
• Delivered to requesting (local to processor) cache

• Automatic and transparent
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Memory Access Sequence

• Each node maintains directory of location of portions of 

memory and cache status

• e.g. node 2 processor 3 (P2-3) requests location 798 which is in 

memory of node 1

– P2-3 issues read request on snoopy bus of node 2

– Directory on node 2 recognises location is on node 1

– Node 2 directory requests node 1’s directory

– Node 1 directory requests contents of 798

– Node 1 memory puts data on (node 1 local) bus

– Node 1 directory gets data from (node 1 local) bus

– Data transferred to node 2’s directory

– Node 2 directory puts data on (node 2 local) bus

– Data picked up, put in P2-3’s cache and delivered to processor
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Cache Coherence

• Node 1 directory keeps note that node 2 has 
copy of data

• If data modified in cache, this is broadcast to 
other nodes

• Local directories monitor and purge local cache 
if necessary

• Local directory monitors changes to local data 
in remote caches and marks memory invalid 
until writeback

• Local directory forces writeback if memory 
location requested by another processor

59

NUMA Pros & Cons

• Effective performance at higher levels of parallelism than SMP

• No major software changes

• Performance can breakdown if too much access to remote 

memory

– Can be avoided by:

• L1 & L2 cache design reducing all memory access

– Need good temporal locality of software

• Good spatial locality of software

• Virtual memory management moving pages to nodes that are using them 

most

• Not transparent

– Page allocation, process allocation and load balancing changes needed

• Availability?
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Vector Computation

• Maths problems involving physical processes present different difficulties 
for computation

– Aerodynamics, seismology, meteorology

– Continuous field simulation

• High precision

• Repeated floating point calculations on large arrays of numbers

• Supercomputers handle these types of problem

– Hundreds of millions of flops

– $10-15 million

– Optimised for calculation rather than multitasking and I/O

– Limited market

• Research, government agencies, meteorology

• Array processor

– Alternative to supercomputer

– Configured as peripherals to mainframe & mini

– Just run vector portion of problems
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Vector Addition Example
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Approaches

• General purpose computers rely on iteration to do 
vector calculations

• In example this needs six calculations

• Vector processing

– Assume possible to operate on 1 dimensional vector of data

– All elements in a particular row can be calculated in parallel

• Parallel processing

– Independent processors functioning in parallel

– Use FORK N to start individual process at location N

– JOIN N causes N independent processes to join and merge 
following JOIN

• O/S Co-ordinates JOINs

• Execution is blocked until all N processes have reached JOIN
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Processor Designs

• Pipelined ALU

– Within operations

– Across operations

• Parallel ALUs

• Parallel processors
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Approaches to Vector Computation

Pipelined ALU

Parallel ALUs

Chaining

• Cray Supercomputers

• Vector operation may start as soon as first 

element of operand vector available and 

functional unit is free

• Result from one functional unit is fed 

immediately into another

• If vector registers used, intermediate results do 

not have to be stored in memory
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Computer Organizations
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IBM 3090 with Vector Facility
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