
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

Computer Architecture

Parallel Processing

2

Outline

• Multiple Processor Organization
– Single instruction, single data stream – SISD

– Single instruction, multiple data stream – SIMD

– Multiple instruction, single data stream – MISD

– Multiple instruction, multiple data stream- MIMD

• Symmetric Multiprocessors

• Organization Classification

• Operating System Issues

• Multithreading and Chip Multiprocessors

• Implicit and Explicit Multithreading

• Scalar Processor Approaches

• Multiple Instruction Issue Processors

• Clusters

• Nonuniform Memory Access (NUMA)

• Vector Computation

3

Parallel Processing

• The computer is viewed as a sequential

machine

• This view of the computer has never been

entirely true.

– At the micro-operation level, multiple control

signals are generated at the same time

– In instruction pipelining, fetch and execute stages

overlap

– In superscalar, there is instruction level parallelizm

4

Parallel Processing

• Computer technology has evolved

• Cost of hardware has dropped

• Designers have sought more and more
opportunities for parallelism ...
– to enhance performance

– to increase availability

• Some approaches:
– Symmetric multiprocessors (SMPs)

– Clusters

– Multithreaded processors

– Chip multiprocessors

– Nonuniform memory access (NUMA) machines

5

Multiple Processor Organization

• Categorization of systems with parallel processing capability:
– Single instruction, single data stream – SISD

• A single processor executes a single stream to operate on data stored in a
single memory

• Uniprocessors fall into this category

– Single instruction, multiple data stream – SIMD

• A single machine instruction controls the simultaneous execution of a
number of processing elements

• Vector and array processors fall into this category

– Multiple instruction, single data stream – MISD

• A sequence of data is transmitted to a set of processors, each of which
executes a different instruction sequence

• Not comercially implemented

– Multiple instruction, multiple data stream- MIMD

• A set of processors simultaneously execute different instruction sequences
on different data sets.

• SMPs, clusters, and NUMA systems fit into this category

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

Taxonomy of Parallel Processor Architectures

7

Multiple instruction, multiple data stream- (MIMD) - Overview

• Processors are general purpose

– Each can process all instructions necessary

• Further classified by method of processor

communication:

– Shared memory (Tightly coupled)

• Symmetric multiprocessor (SMP)

• Nonuniform memory access (NUMA)

– Distributed memory (Loosely coupled)

• clusters

8

Tightly Coupled - SMP

• Processors share memory

• Communicate via that shared memory

• Symmetric Multiprocessor (SMP)

– Share single memory or pool

– Shared bus to access memory

– Memory access time to given area of memory is
approximately the same for each processor

• The operating system takes care of scheduling
of threads or processes on individiual
processors and of synchronization among
processors

9

Tightly Coupled - NUMA

• Nonuniform memory access

• Access times to different regions of memory

may differ for a NUMA processor

10

Loosely Coupled - Clusters

• Collection of independent uniprocessors or

SMPs

• Interconnected to form a cluster

• Communication via fixed path or network

connections

11

Multiple Processor Organization

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Symmetric Multiprocessors

• A stand alone computer with the following

characteristics
– Two or more similar processors of comparable capacity

– Processors share same memory and I/O

– Processors are connected by a bus or other internal connection

– Memory access time is approximately the same for each processor

– All processors share access to I/O

• Either through same channels or different channels giving paths to same

devices

– All processors can perform the same functions (hence symmetric)

– System controlled by integrated operating system

• providing interaction between processors

• Interaction at job, task, file and data element levels

13

Multiprogramming and Multiprocessing

14

Potential SMP Advantages

• Performance

– If some work can be done in parallel

• Availability

– Since all processors can perform the same functions,

failure of a single processor does not halt the system

• Incremental growth

– User can enhance performance by adding additional

processors

• Scaling

– Vendors can offer range of products based on number

of processors

15

Block Diagram of Tightly Coupled Multiprocessor

• Each processor...
– is self contained

• has ALU,
registers, cache,
etc.

– has access to shared
main memory

– has access to I/O
devices through
some form of
interconnection
mechanism

• Simultaneous
access to seperate
blocks in memory is
possible

16

Organization Classification

• Time shared or common bus

• Multiport memory

• Central control unit

17

Time Shared Bus

• Simplest form

• Structure and interface similar to single

processor system

• Following features provided

– Addressing - distinguish modules on bus

– Arbitration - any module can be temporary master

– Time sharing - if one module has the bus, others

must wait and may have to suspend

• Now have multiple processors as well as

multiple I/O modules
18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Symmetric Multiprocessor Organization

19

Time Share Bus - Advantages - Disadvantage

• Advantages:

– Simplicity

– Flexibility

– Reliability

• Disadvantages:

– Performance limited by bus cycle time

– Each processor should have local cache

• Reduce number of bus accesses

– Leads to problems with cache coherence

20

Operating System Issues

• An SMP OS manages processor and other
computer resources

• A multiprocessor OS must provide all the
functionality of a multiprogramming system
plus additional features to accomodate multiple
processors.

• So, the key design issues are the following:
– Simultaneous concurrent processes

– Scheduling

– Synchronization

– Memory management

– Reliability and fault tolerance

21

A Mainframe SMP - IBM zSeries

• Uniprocessor with one main memory card to a high-end system with 48 processors
and 8 memory cards

• Dual-core processor chip
– Each includes two identical central processors (CPs)

– CISC superscalar microprocessor

– Mostly hardwired, some vertical microcode

– 256-kB L1 instruction cache and a 256-kB L1 data cache

• L2 cache 32 MB
– Clusters of five

– Each cluster supports eight processors and access to entire main memory space

• System control element (SCE)
– Arbitrates system communication

– Maintains cache coherence

• Main store control (MSC)
– Interconnect L2 caches and main memory

• Memory card
– Each 32 GB, Maximum 8 , total of 256 GB

– Interconnect to MSC via synchronous memory interfaces (SMIs)

• Memory bus adapter (MBA)
– Interface to I/O channels, go directly to L2 cache

22

23

IBM z990 Multiprocessor Structure Cache Coherence and MESI Protocol

• MESI (Modified/Exclusive/Shared/Invalid)

• Problem - multiple copies of same data in

different caches

• Can result in an inconsistent view of memory

• Write back policy can lead to inconsistency

• Write through can also give problems unless

caches monitor memory traffic

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

Software Solutions

• Compiler and operating system deal with

problem

• Overhead transferred to compile time

• Design complexity transferred from hardware

to software

• However, software tends to make conservative

decisions

– Inefficient cache utilization

• Analyze code to determine safe periods for

caching shared variables
25

Hardware Solution

• Cache coherence protocols

• Dynamic recognition of potential problems

• Run time

• More efficient use of cache

• Transparent to programmer

• Directory protocols

• Snoopy protocols

26

Directory Protocols

• Collect and maintain information about copies

of data in cache

• Directory stored in main memory

• Requests are checked against directory

• Appropriate transfers are performed

• Creates central bottleneck

• Effective in large scale systems with complex

interconnection schemes

27

Snoopy Protocols

• Distribute cache coherence responsibility

among cache controllers

• Cache recognizes that a line is shared

• Updates announced to other caches

• Suited to bus based multiprocessor

• Increases bus traffic

• Two basic approaches:

– Write-invalidate

– Write-update (write broadcast)

28

Write Invalidate

• Multiple readers, one writer

• When a write is required, all other caches of

the line are invalidated

• Writing processor then has exclusive (cheap)

access until line required by another processor

• Used in Pentium II and PowerPC systems

• State of every line is marked as Modified,

Exclusive, Shared or Invalid

• Therefore also called MESI

29

Write Update

• Multiple readers and writers

• Updated word is distributed to all other

processors

• Some systems use an adaptive mixture of both

solutions

30

Copyright 2000 N. AYDIN. All rights

reserved. 6

MESI State Transition Diagram

31

Multithreading and Chip Multiprocessors

• Processor performance can be measured by the
rate at which it executes instructions
– MIPS rate = f * IPC

• f processor clock frequency, in MHz

• IPC is average instructions per cycle

• MIPS, million instructions per second

• Increase performance by increasing clock
frequency and increasing instructions that
complete during cycle

• May be reaching limit
– Complexity

– Power consumption

32

Multithreading and Chip Multiprocessors

• In multithreading:

– Instruction stream divided into smaller streams

(threads)

• Threads can be executed in parallel

• Wide variety of multithreading designs

• Thread in multithreaded processors may or

may not be the same as software threads.

33

Definitions of Threads and Processes

• Some important terms are:
– Process:

• An instance of program running on a computer, which embodies two key
characteristics:

– Resource ownership

• Virtual address space to hold process image

– Scheduling/execution

– Process switch:

• An operation that switches the processor from one process to another

– Thread: A dispatchable unit of work within process

• Includes processor context (which includes the program counter and stack
pointer) and data area for stack

• Thread executes sequentially

• Interruptible: processor can turn to another thread

– Thread switch

• Switching processor between threads within same process

• Typically less costly than process switch

34

Implicit and Explicit Multithreading

• All commercial processors and most
experimental ones use explicit multithreading

– Concurrently execute instructions from different
explicit threads

– Interleave instructions from different threads on
shared pipelines or parallel execution on parallel
pipelines

• Implicit multithreading is concurrent execution
of multiple threads extracted from single
sequential program

– Implicit threads defined statically by compiler or
dynamically by hardware

35

Approaches to Explicit Multithreading

• Interleaved

– Fine-grained

– Processor deals with two or more thread contexts at a time

– Switching thread at each clock cycle

– If thread is blocked it is skipped

• Blocked

– Coarse-grained

– Thread executed until event causes delay

– E.g.Cache miss

– Effective on in-order processor

– Avoids pipeline stall

• Simultaneous (SMT)

– Instructions simultaneously issued from multiple threads to execution units of
superscalar processor

• Chip multiprocessing

– Processor is replicated on a single chip

– Each processor handles separate threads

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Scalar Processor Approaches

• Single-threaded scalar
– Simple pipeline

– No multithreading

• Interleaved multithreaded scalar
– Easiest multithreading to implement

– Switch threads at each clock cycle

– Pipeline stages kept close to fully occupied

– Hardware needs to switch thread context between
cycles

• Blocked multithreaded scalar
– Thread executed until latency event occurs

– Would stop pipeline

– Processor switches to another thread

37

Scalar Diagrams

38

Multiple Instruction Issue Processors (1)

• Superscalar

– No multithreading

• Interleaved multithreading superscalar:

– Each cycle, as many instructions as possible issued

from single thread

– Delays due to thread switches eliminated

– Number of instructions issued in cycle limited by

dependencies

• Blocked multithreaded superscalar

– Instructions from one thread

– Blocked multithreading used
39

Multiple Instruction Issue Diagram (1)

40

Multiple Instruction Issue Processors (2)

• Very long instruction word (VLIW)
– E.g. IA-64

– Multiple instructions in single word

– Typically constructed by compiler

– Operations that may be executed in parallel in same
word

– May pad with no-ops

• Interleaved multithreading VLIW
– Similar efficiencies to interleaved multithreading on

superscalar architecture

• Blocked multithreaded VLIW
– Similar efficiencies to blocked multithreading on

superscalar architecture

41

Multiple Instruction Issue Diagram (2)

42

Copyright 2000 N. AYDIN. All rights

reserved. 8

Parallel, Simultaneous Execution of Multiple Threads

• Simultaneous multithreading

– Issue multiple instructions at a time

– One thread may fill all horizontal slots

– Instructions from two or more threads may be issued

– With enough threads, can issue maximum number of

instructions on each cycle

• Chip multiprocessor

– Multiple processors

– Each has two-issue superscalar processor

– Each processor is assigned thread

• Can issue up to two instructions per cycle per thread

43

Parallel Diagram

44

Examples

• Some Pentium 4

– Intel calls it hyperthreading

– SMT with support for two threads

– Single multithreaded processor, logically two
processors

• IBM Power5

– High-end PowerPC

– Combines chip multiprocessing with SMT

– Chip has two separate processors

– Each supporting two threads concurrently using
SMT

45

Power 5 Instruction Data Flow

46

Clusters

• Alternative to SMP
– High performance

– High availability

– Server applications

• A group of interconnected whole computers
– Working together as unified resource

– Illusion of being one machine

– Each computer called a node

• Cluster Benefits:
– Absolute scalability

– Incremental scalability

– High availability

– Superior price/performance

47

Cluster Configurations

48

Standby Server, No Shared Disk

Shared Disk

Copyright 2000 N. AYDIN. All rights

reserved. 9

Operating Systems Design Issues

• Failure Management

– High availability

– Fault tolerant

– Failover

• Switching applications & data from failed system to alternative within

cluster

– Failback

• Restoration of applications and data to original system

• After problem is fixed

• Load balancing

– Incremental scalability

– Automatically include new computers in scheduling

– Middleware needs to recognise that processes may switch between

machines

49

Parallelizing

• Single application executing in parallel on a
number of machines in cluster
– Complier

• Determines at compile time which parts can be executed in
parallel

• Split off for different computers

– Application
• Application written from scratch to be parallel
• Message passing to move data between nodes
• Hard to program
• Best end result

– Parametric computing
• If a problem is repeated execution of algorithm on different

sets of data
• e.g. simulation using different scenarios
• Needs effective tools to organize and run

50

Cluster Computer Architecture

51

Cluster Middleware

• Unified image to user
– Single system image

• Single point of entry

• Single file hierarchy

• Single control point

• Single virtual networking

• Single memory space

• Single job management system

• Single user interface

• Single I/O space

• Single process space

• Checkpointing

• Process migration

52

Cluster vs SMP

• Both provide multiprocessor support to high
demand applications.

• Both available commercially
– SMP for longer

• SMP:
– Easier to manage and control
– Closer to single processor systems

• Scheduling is main difference
• Less physical space
• Lower power consumption

• Clustering:
– Superior incremental & absolute scalability
– Superior availability

• Redundancy

53

Nonuniform Memory Access (NUMA)

• Alternative to SMP & clustering

• Uniform memory access
– All processors have access to all parts of memory

• Using load & store

– Access time to all regions of memory is the same

– Access time to memory for different processors same

– As used by SMP

• Nonuniform memory access
– All processors have access to all parts of memory

• Using load & store

– Access time of processor differs depending on region of memory

– Different processors access different regions of memory at different
speeds

• Cache coherent NUMA
– Cache coherence is maintained among the caches of the various

processors

– Significantly different from SMP and clusters

54

Copyright 2000 N. AYDIN. All rights

reserved. 10

Motivation

• SMP has practical limit to number of processors

– Bus traffic limits to between 16 and 64 processors

• In clusters each node has own memory

– Apps do not see large global memory

– Coherence maintained by software not hardware

• NUMA retains SMP flavour while giving large scale

multiprocessing

– e.g. Silicon Graphics Origin NUMA 1024 MIPS R10000

processors

• Objective is to maintain transparent system wide

memory while permitting multiprocessor nodes, each

with own bus or internal interconnection system
55

CC-NUMA Organization

56

CC-NUMA Operation

• Each processor has own L1 and L2 cache

• Each node has own main memory

• Nodes connected by some networking facility

• Each processor sees single addressable memory
space

• Memory request order:
– L1 cache (local to processor)

– L2 cache (local to processor)

– Main memory (local to node)

– Remote memory
• Delivered to requesting (local to processor) cache

• Automatic and transparent
57

Memory Access Sequence

• Each node maintains directory of location of portions of

memory and cache status

• e.g. node 2 processor 3 (P2-3) requests location 798 which is in

memory of node 1

– P2-3 issues read request on snoopy bus of node 2

– Directory on node 2 recognises location is on node 1

– Node 2 directory requests node 1’s directory

– Node 1 directory requests contents of 798

– Node 1 memory puts data on (node 1 local) bus

– Node 1 directory gets data from (node 1 local) bus

– Data transferred to node 2’s directory

– Node 2 directory puts data on (node 2 local) bus

– Data picked up, put in P2-3’s cache and delivered to processor

58

Cache Coherence

• Node 1 directory keeps note that node 2 has
copy of data

• If data modified in cache, this is broadcast to
other nodes

• Local directories monitor and purge local cache
if necessary

• Local directory monitors changes to local data
in remote caches and marks memory invalid
until writeback

• Local directory forces writeback if memory
location requested by another processor

59

NUMA Pros & Cons

• Effective performance at higher levels of parallelism than SMP

• No major software changes

• Performance can breakdown if too much access to remote

memory

– Can be avoided by:

• L1 & L2 cache design reducing all memory access

– Need good temporal locality of software

• Good spatial locality of software

• Virtual memory management moving pages to nodes that are using them

most

• Not transparent

– Page allocation, process allocation and load balancing changes needed

• Availability?

60

Copyright 2000 N. AYDIN. All rights

reserved. 11

Vector Computation

• Maths problems involving physical processes present different difficulties
for computation

– Aerodynamics, seismology, meteorology

– Continuous field simulation

• High precision

• Repeated floating point calculations on large arrays of numbers

• Supercomputers handle these types of problem

– Hundreds of millions of flops

– $10-15 million

– Optimised for calculation rather than multitasking and I/O

– Limited market

• Research, government agencies, meteorology

• Array processor

– Alternative to supercomputer

– Configured as peripherals to mainframe & mini

– Just run vector portion of problems

61

Vector Addition Example

62

Approaches

• General purpose computers rely on iteration to do
vector calculations

• In example this needs six calculations

• Vector processing

– Assume possible to operate on 1 dimensional vector of data

– All elements in a particular row can be calculated in parallel

• Parallel processing

– Independent processors functioning in parallel

– Use FORK N to start individual process at location N

– JOIN N causes N independent processes to join and merge
following JOIN

• O/S Co-ordinates JOINs

• Execution is blocked until all N processes have reached JOIN

63

Processor Designs

• Pipelined ALU

– Within operations

– Across operations

• Parallel ALUs

• Parallel processors

64

65

Approaches to Vector Computation

Pipelined ALU

Parallel ALUs

Chaining

• Cray Supercomputers

• Vector operation may start as soon as first

element of operand vector available and

functional unit is free

• Result from one functional unit is fed

immediately into another

• If vector registers used, intermediate results do

not have to be stored in memory

66

Copyright 2000 N. AYDIN. All rights

reserved. 12

Computer Organizations

67

IBM 3090 with Vector Facility

68

69

