Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

Computer Architecture

Instruction Level
Parallelism and
Superscalar Processors

Outline

What is Superscalar?
Superpipelining
 Limitations

— Data Dependency

— Procedural Dependency
— Resource Conflict
Effect of Dependencies

Instruction level parallelizm and machine level
parallelism

Instruction Issue Policy
Antidependency
Register Renaming

» Machine Parallelism

What is Superscalar?

« A superscalar implementation of a processor
architecture is one in which...
— common instructions (arithmetic, load/store,
conditional branch) can be
« initiated simultaneously and
« executed independently

« Superscalar approach can be equally applicable
to RISC & CISC

* In practice usually RISC

Why Superscalar?

designed to improve the performance of the
execution of scalar instructions

In most applications, most operations are on
scalar quantities

Improve these operations to get an overall
improvement

Essence of the superscalar approach is the

different pipelines

The term superscalar refers to a machine that is

ability to execute instructions independently in

General Superscalar Organization - Superpipelining

Integer Register File Floating Point Register File

ALY

Pipelined
functional

units A

Memory

Superpipelining is an alternative approach to achieving
greater performance

It exploits the fact that many pipeline stages need less
than half a clock cycle

Double internal clock speed gets two tasks per external
clock cycle

Superscalar allows parallel fetch execute

.

Copyright 2000 N. AYDIN. All rights
reserved.



mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Superscalar vSuperpipeline

Ordinary pipeline

T~

Superpipelined
approach:
2 pipeline stages per
clock cycle

Superscalar
implementation

Executing two instanc
of each stage in parallel

Higher-degree
superpipeline and
superscalar
implementations are
possible -

Limitations

 Superscalar approach depends on the ability to execute multiple
instructions in parallel
« Instruction level parallelism refers to the degree to which, on
average, the instructions of a program can be executed in
parallel
» To maximize instruction-level parallelism:
Compiler based optimisation
Hardware techniques
» Fundamental limitations to parallelism:
— True data dependency
— Procedural dependency
— Resource conflicts
Output dependency
Antidependency

True Data Dependency

A true data dependency occurs when an instruction
depends on the result of a previous instruction

Consider the following sequence:
ADD 11, r2 (r1:=r1+r2;)
MOVE r3,r1 (r3:=r1;)

Can fetch and decode second instruction in parallel
with first
— However, can NOT execute the second instruction until the
first one is finished
Also called flow dependency or write-read
dependency

True Data Dependency

Key:

f
No Dependency

] o
Iz Data Dependency !
y(il uses data computedhy i0)

Procedural Dependency

The presence of branches in an instruction
sequence complicates the pipeline operation
The instruction following a branch

have a procedural dependency on the branch and
— can not be executed until the branch is executed
Also, if instruction length is not fixed,
instructions have to be decoded to find out how
many fetches are needed

This prevents simultaneous fetches

Effect of a branch on a superscalar pipeline of degree 2

i0

.Pracedu.rnl Dep;ndeucy
il/branch|

Copyright 2000 N. AYDIN. All rights

reserved.




Resource Conflict

* A resource conflict is...
— a competition of two or more instructions requiring
access to the same resource at the same time
* e.g. two arithmetic instructions
+ In terms of pipeline it exhibits similar behavior
to a data dependency
» However, resource conflict can be overcome by
duplication of resources
— e.g. have two arithmetic units

Resource Conflict

. :Resonn‘e Confliet
il 1(i0 and il use the same
4 H I : h . :funcrinnal uniti:
0o 1 2 3 4 5 i 1 8 ’o

Time in base cycles

Effect of Dependencies

Instruction level parallelizm and machine level parallelizm

« Instruction level parallelism exists when...
Instructions in a sequence are independent
< Therefore execution can be overlapped

 Degree of instruction level parallelizm determined by the
frequency of true data and procedural dependencies in the code

« For example consider the following codes:

Load R1 <« R2 Add R3 & R3,717
Add R3 € R3,71” Add R4 < R3,R2
Add R4 < R4, R2 Store  [R4] € RO

Instructions on the left are independent, so they can be
executed in parallel

Instructions on the right are not independent (data
dependency), so they cannot be executed in parallel

Instruction level parallelizm and machine level parallelizm

+ Machine Parallelism is a measure of the...
— ability to take advantage of instruction level parallelism

* Itis determined by ...
the number of instructions that can be fetched and
executed at the same time
« (number of parallel pipelines)
— the speed and sophistication of the mechanisms that the
processor uses to find independent instructions
« Both instruction level and machine level
paralellizm are important factors in enhancing
performance

Instruction Issue Policy

« Instruction issue is the process of initiating instruction
execution in the processor’s functional units

« Instruction issue policy is the protocol to issue
instructions

» The processor is trying to look ahead of the current
point of execution to locate instructions that can be
brought into the pipeline and executed

» Three types of orderings are important:
— Order in which instructions are fetched
— Order in which instructions are executed
— Order in which instructions change registers and memory

Copyright 2000 N. AYDIN. All rights
reserved.



Instruction Issue Policy

« In general, instruction issue policies can be
devided into the following categories:

— In-order issue with in-order completion
— In-order issue with out-of-order completion

— Out-of-order issue with out-of-order completion

In-Order Issue with In-Order Completion

« Issue instructions in the order they occur
» Not very efficient
« May fetch >1 instruction
« Instructions must stall if necessary
+ Next slide is an example to this policy
+ Assume a superscale pipeline ...
capable of fetching and decoding 2 instructions at a time,
have 3 seperate functional unit, and
— two instances of the write-back pipeline stage
» Example assumes the following constraints
11 requires 2 cycles to execute
13 and 14 conflict for the same functional unit
— 15 depends on the value produced by 14
— I5and 16 conflict for a functional unit

In-Order Issue with In-Order Completion (Diagram)

Decode Execute Write Cycle
11 12 1
13 14 11 12 2
13 14 11 3
14 13 11| 12 4
15 I3 14 5
16 15 13 [ 14 6
16 7
15 [ 16 ¥

Instructions are fetched in pairs and passed to the decode unit
Next 2 instructions must wait until the pair of decode pipeline stages has
cleared

»  When there is a conflict for a functional unit or when a functional unit
requires more than 1 cycle to generate a result, issuing of instructions
temporarily stalls

In-Order Issue with Out-of-Order Completion

+ Used in scalar RISC processors to improve the
performance of instructions that require
multiple cyles
— next slide illustrates its use on a superscalar

processor

 Output dependency (write-write dependency)

I1: R3 € R3+R5
12: R4 € R3+1
I3: R3€ R5+1
14: R7 € R3 + R4
— 12 depends on result of I1 - data dependency

— If 13 completes before 11, the result from I1 will be
wrong

In-Order Issue with Out-of-Order Completion (Diagram)

Decode Execute Write Cvele
11 12 1
13 14 11 12 2
14 11 13 12 3
15 16 14 11|13 4
16 15 14 5
16 15 6
16 7

» Out-of-order completion requires more complex instruction issue
logic than in-order completion
« More difficult to deal with instruction interrupts and exceptions

» When an interrupt happens, instruction execution at the current
point is suspended, to be resumed later

Out-of-Order Issue with Out-of-Order Completion

» To allow out-of-order issue, it is necessary...
to decouple decode pipeline from execution pipeline
« This is done with a buffer referred to as an instruction window
— After a processor has finished decoding an instruction, it is placed into
instruction window
Since instructions have been decoded, processor can look ahead
* Processor can continue to fetch and decode new instructions
until this buffer is full
» When a functional unit becomes available in the execution
stage, an instruction from the instruction window may be issued
to the execute stage
+ Any instruction may be issued, provided that...
— it needs the particular functional unit that is available
— no conflict or dependencies block this instruction

Next slide illustrates this policy

Copyright 2000 N. AYDIN. All rights
reserved.




Out-of-Order Issue Out-of-Order Completion (Diagram)

Decode Window Execute Write Cyele
11 12 1
13 14 11 12

15 16 11 13 12

16 14 11 13
15 14 | In
15

E SR R N

2 instructions fetched into the decode stage

2 instructions move to the instruction window

It is possible to issue 16 ahead of I5 (16 does not depend on I5)
» One cycle is saved

» Window implies that the processor has sufficient information
about that instruction to decide when it can be issued

Antidependency

« An instruction cannot be issued if it violates a dependency or
conflict
« In out-of-order issue with out-of-order completion policy, more
instructions are available for issuing reducing the possibility
that a pipeline stage will have to stall
Antidepencency (read-write dependency) arises
11:R3 € R3 +R5
12:R4 €R3+1
13:R3 € R5+1
14:R7 € R3 + R4
— 13 cannot complete execution before 12 starts as 12 needs a value in R3
and 13 changes R3

— Itis called antidependency because the constraint is similar to that of
true data dependency, but reversed,

Register Renaming

« Output and antidependencies occur because
register contents may not reflect the correct
ordering from the program

» May result in a pipeline stall

One solution is duplication of resources:

— called register renaming

Registers allocated dynamically by the

processor hardware, and they are associated

with the values needed by instructions at
various points in time.
— i.e. registers are not specifically named

Register Renaming example

I1: R3, € R3, +R5,

12: R4, € R3, +1

13:R3, ¢ R5,+ 1

14: R7, € R3,+ R4,
Without subscript refers to logical register in
instruction
With subscript is hardware register allocated
In this example, the creation of R3, in 13 avoids...
— the antidependency on the 2nd instruction and

output dependency on the 1st instruction,

and it does not interfere with the correct value being
accessed by 14.
The result is that I3 can be issued until the 1st
!nstrléctlon is complete and the 2nd instruction is
issue

Machine Parallelism

3 hardware techniques in superscalar
processors to enhance performance:

Duplication of Resources

Out of order issue

Renaming
Next slide shows results of a study, made use
of a simulation that modeled a machine with
the characteristic of the MIPS R2000,
augmented with various superscalar features

Speedups of Machine Organizations
without Procedural Dependencies

+ Graphs yield some important conclusions:

— Not worth duplication functions without register renaming
Need instruction window large enough (more than 8)

Copyright 2000 N. AYDIN. All rights
reserved.




Superscalar Execution

T instruction  instruction
. €xecution reorder and
commit

static
program

window of
execution

Superscalar Implementation

+ Simultaneously fetch multiple instructions

+ Logic to determine true dependencies involving
register values

« Mechanisms to communicate these values

« Mechanisms to initiate multiple instructions in
parallel

« Resources for parallel execution of multiple
instructions

« Mechanisms for committing process state in
correct order

Pentium 4

80486 - CISC

Pentium — some superscalar components
— Two separate integer execution units
Pentium Pro — Full blown superscalar

Subsequent models refine & enhance
superscalar design

Pentium 4 Block Diagram

L2 Cache and Conrol

]

=H

3

3.2 GB/s System Interface

I I )
Integer Register File__|

Schedulers

Rename/Alloc
L1 D-Cache and D-TLB

m

i

1

[ FPRepiserFie | |

dress generation unit
anch target buffer

Pentium 4 Operation

Fetch instructions form memory in order of static program
Translate instruction into one or more fixed length RISC
instructions (micro-operations)
Execute micro-ops on superscalar pipeline

micro-ops may be executed out of order
Commit results of micro-ops to register set in original program
flow order
Outer CISC shell with inner RISC core
Inner RISC core pipeline at least 20 stages

Some micro-ops require multiple execution stages

« Longer pipeline
c.f. five stage pipeline on x86 up to Pentium

Pentium 4 Pipeline

9
Que

10
Sch

1
Sch

12
Sch

1B[1a]15]16

RF | RE

1|z 3|A 7|z 17 [ 18

Disp | Disp Ex | Flgs

5|6
[Drive{ Alloc]

TC Next 1P = trace cach nest instruction pointer
TC Felch = tiace cashe fetch
Alloc = a

19 | 20
TCNxt IP| TC Fetch B Ck|Dri
1 1

Rename.
1

Copyright 2000 N. AYDIN. All rights
reserved.




Pentium 4 Pipeline

Operation (1)

L2 Cache and Control

L2 Cache and Control

™ = ]

E £

‘é @

o

3| E 3

i) Genera tion of miewo ups

Remame/Alle

() Trace eache next instruction pointer

L1 D-Cache and D-TLE

Pentium 4 Pipeline Operation (2)

L2 Cache and Control

L2 Cache and Contrl

o
3
E
“
@
E

Feteh/Decode

op Quewes
ETE & I-TLE

{6} Trace cache fetch

op Quenes

{d) Drive

L1D-Cache and D-TLE

Pentium 4 Pipeline

Operation (3)

L2 Cache and Control

L2 Cache and Contrel

@
3
g
Fl
m
4]
@

Betch/Decu e

ETE & I-TLB

() Alleate; Register renaming

Betch/Decw de
Rename/Alloc

() Miero-op quening

L1 D-Cache and D-TLE

Pentium 4 Pipeline Operation (4)

L2 Caehe and Control

L2 Cache and Control

«
g
P
a
B
5

Fetel/Decode

Trace Cache
ETE & I-TLE

12) Micto-op scheduling

e Cache
Rermme/A lioc
op Quenes

T

iy Dispateh

L1 D-Cache and D-TLB

40,

Pentium 4 Pipeline Operation (5)

L2 Cache and Control

L2 Cache and Contrel

o
3
B
“
@
B

Betch/Decoie

ETE & I-TLE

i) Register file

Rennme/Alloc
Top Quees

1)) Execute; flags

L1D-Cache and D-TLB

Pentium 4 Pipeline Operation (6)

L2 Caehe and Control [

L2 Cache and Contl

o
4
E
“
o
E
@

Feteh/Decode

Sche dulers

o
4
E
“
o
E
@

(k) Branch check

Betch/Deco e

wop Quens
el dulets

{1y Branch cheek vestilt

L1 D-Cache and D-TLB

a2

Copyright 2000 N. AYDIN. All rights

reserved.




PowerPC

Direct descendent of IBM 801, RT PC and
RS/6000

All are RISC
RS/6000 first superscalar

PowerPC 601 superscalar design similar to
RS/6000

Later versions extend superscalar concept

PowerPC 601 General View

256 bils

Instruction fetch
and dispatch

2 hits

Floating-point
Unit

Branch

Processing Unit

64 hits

4]

PowerPC 601 Pipeline Structure

Branch
Instructions

Integer
Instructions

Load/store
Instructions

Floating-peint
Instructions

PowerPC 601 Pipeline

Fetch

Dispatch
Decode
Execute

Predict

—

Fetch

Dispatch
Decode

Execute

Writeback|

Fetch

Dispatch
Decode

Addr gen

Cache

Writeback|

Fetch

Dispatch

Decode

Executel

Execute2

Writeback

46,

Copyright 2000 N. AYDIN. All rights

reserved.




