
Copyright 2000 N. AYDIN. All rights 

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

Computer Architecture

Instruction Level 

Parallelism and 

Superscalar Processors

2

Outline

• What is Superscalar?

• Superpipelining

• Limitations
– Data Dependency

– Procedural Dependency

– Resource Conflict

• Effect of Dependencies

• Instruction level parallelizm and machine level 
parallelism

• Instruction Issue Policy

• Antidependency

• Register Renaming

• Machine Parallelism

3

What is Superscalar?

• A superscalar implementation of a processor

architecture is one in which...

– common instructions (arithmetic, load/store, 

conditional branch) can be 

• initiated simultaneously and 

• executed independently

• Superscalar approach can be equally applicable 

to RISC & CISC

• In practice usually RISC

4

Why Superscalar?

• The term superscalar refers to a machine that is 

designed to improve the performance of the

execution of scalar instructions

• In most applications, most operations are on 

scalar quantities

• Improve these operations to get an overall 

improvement

• Essence of the superscalar approach is the

ability to execute instructions independently in 

different pipelines

5

General Superscalar Organization - Superpipelining

• Superpipelining is an alternative approach to achieving
greater performance

• It exploits the fact that many pipeline stages need less 
than half a clock cycle

• Double internal clock speed gets two tasks per external 
clock cycle

• Superscalar allows parallel fetch execute

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com


Copyright 2000 N. AYDIN. All rights 

reserved. 2

Superscalar vSuperpipeline

• Ordinary pipeline

• Superpipelined 
approach: 
– 2 pipeline stages per 

clock cycle

• Superscalar 
implementation
– Executing two instances 

of each stage in parallel

• Higher-degree 
superpipeline and 
superscalar 
implementations are 
possible

7

Limitations

• Superscalar approach depends on the ability to execute multiple

instructions in parallel

• Instruction level parallelism refers to the degree to which, on 

average, the instructions of a program can be executed in 

parallel

• To maximize instruction-level parallelism:

– Compiler based optimisation

– Hardware techniques

• Fundamental limitations to parallelism:

– True data dependency

– Procedural dependency

– Resource conflicts

– Output dependency

– Antidependency
8

True Data Dependency

• A true data dependency occurs when an instruction
depends on the result of a previous instruction

• Consider the following sequence:

ADD r1, r2 (r1 := r1+ r2;)

MOVE r3,r1 (r3 := r1;)

• Can fetch and decode second instruction in parallel 
with first

– However, can NOT execute the second instruction until the
first one is finished

• Also called flow dependency or write-read
dependency

9

True Data Dependency

d

10

Procedural Dependency

• The presence of branches in an instruction

sequence complicates the pipeline operation

• The instruction following a branch

– have a procedural dependency on the branch and

– can not be executed until the branch is executed

• Also, if instruction length is not fixed, 

instructions have to be decoded to find out how 

many fetches are needed

• This prevents simultaneous fetches

11

Effect of a branch on a superscalar pipeline of degree 2

12



Copyright 2000 N. AYDIN. All rights 

reserved. 3

Resource Conflict

• A resource conflict is...

– a competition of two or more instructions requiring 

access to the same resource at the same time

• e.g. two arithmetic instructions

• In terms of pipeline it exhibits similar behavior

to a data dependency

• However, resource conflict can be overcome by

duplication of resources

– e.g. have two arithmetic units

13

Resource Conflict

14

Effect of Dependencies

d

15

Instruction level parallelizm and machine level parallelizm

• Instruction level parallelism exists when...
– Instructions in a sequence are independent

• Therefore execution can be overlapped

• Degree of instruction level parallelizm determined by the
frequency of true data and procedural dependencies in the code

• For example consider the following codes:

Load R1  R2 Add R3  R3 , ”1”

Add R3  R3, ”1” Add R4  R3 , R2

Add R4  R4, R2 Store [R4]  R0

• Instructions on the left are independent, so they can be 
executed in parallel

• Instructions on the right are not independent (data 
dependency), so they cannot be executed in parallel

16

Instruction level parallelizm and machine level parallelizm

• Machine Parallelism is a measure of the...

– ability to take advantage of instruction level parallelism

• It is determined by ...

– the number of instructions that can be fetched and

executed at the same time 

• (number of parallel pipelines)

– the speed and sophistication of the mechanisms that the

processor uses to find independent instructions

• Both instruction level and machine level

paralellizm are important factors in enhancing

performance

17

Instruction Issue Policy

• Instruction issue is the process of initiating instruction

execution in the processor’s functional units

• Instruction issue policy is the protocol to issue

instructions

• The processor is trying to look ahead of the current

point of execution to locate instructions that can be 

brought into the pipeline and executed

• Three types of orderings are important:

– Order in which instructions are fetched

– Order in which instructions are executed

– Order in which instructions change registers and memory

18



Copyright 2000 N. AYDIN. All rights 

reserved. 4

Instruction Issue Policy

• In general, instruction issue policies can be 

devided into the following categories:

– In-order issue with in-order completion

– In-order issue with out-of-order completion

– Out-of-order issue with out-of-order completion

19

In-Order Issue with In-Order Completion

• Issue instructions in the order they occur

• Not very efficient

• May fetch >1 instruction

• Instructions must stall if necessary

• Next slide is an example to this policy

• Assume a superscale pipeline ...
– capable of fetching and decoding 2 instructions at a time, 

– have 3 seperate functional unit, and

– two instances of the write-back pipeline stage

• Example assumes the following constraints
– I1 requires 2 cycles to execute

– I3 and I4 conflict for the same functional unit

– I5 depends on the value produced by I4

– I5 and I6 conflict for a functional unit

20

In-Order Issue with In-Order Completion (Diagram)

• Instructions are fetched in pairs and passed to the decode unit

• Next 2 instructions must wait until the pair of decode pipeline stages has 
cleared

• When there is a conflict for a functional unit or when a functional unit
requires more than 1 cycle to generate a result, issuing of instructions
temporarily stalls

21

In-Order Issue with Out-of-Order Completion

• Used in scalar RISC processors to improve the
performance of instructions that require
multiple cyles
– next slide illustrates its use on a superscalar

processor

• Output dependency (write-write dependency)

I1: R3  R3 + R5 

I2: R4  R3 + 1

I3: R3  R5 + 1

I4: R7  R3 + R4

– I2 depends on result of I1 - data dependency

– If I3 completes before I1, the result from I1 will be 
wrong

22

In-Order Issue with Out-of-Order Completion (Diagram)

• Out-of-order completion requires more complex instruction issue 
logic than in-order completion

• More difficult to deal with instruction interrupts and exceptions

• When an interrupt happens, instruction execution at the current 
point is suspended, to be resumed later

23

Out-of-Order Issue with Out-of-Order Completion

• To allow out-of-order issue, it is necessary...
– to decouple decode pipeline from execution pipeline

• This is done with a buffer referred to as an instruction window

– After a processor has finished decoding an instruction, it is placed into
instruction window

– Since instructions have been decoded, processor can look ahead

• Processor can continue to fetch and decode new instructions
until this buffer is full

• When a functional unit becomes available in the execution
stage, an instruction from the instruction window may be issued
to the execute stage

• Any instruction may be issued, provided that...
– it needs the particular functional unit that is available

– no conflict or dependencies block this instruction

• Next slide illustrates this policy

24



Copyright 2000 N. AYDIN. All rights 

reserved. 5

Out-of-Order Issue Out-of-Order Completion (Diagram)

• 2 instructions fetched into the decode stage

• 2 instructions move to the instruction window

• It is possible to issue I6 ahead of I5 (I6 does not depend on I5)

• One cycle is saved

• Window implies that the processor has sufficient information
about that instruction to decide when it can be issued

25

Antidependency

• An instruction cannot be issued if it violates a dependency or
conflict

• In out-of-order issue with out-of-order completion policy, more
instructions are available for issuing reducing the possibility
that a pipeline stage will have to stall

• Antidepencency (read-write dependency) arises

I1: R3  R3 + R5 

I2: R4  R3 + 1

I3: R3  R5 + 1

I4: R7  R3 + R4

– I3 cannot complete execution before I2 starts as I2 needs a value in R3 
and I3 changes R3

– It is called antidependency because the constraint is similar to that of 
true data dependency, but reversed, 

26

Register Renaming

• Output and antidependencies occur because 
register contents may not reflect the correct 
ordering from the program

• May result in a pipeline stall

• One solution is duplication of resources: 

– called register renaming

• Registers allocated dynamically by the
processor hardware, and they are associated
with the values needed by instructions at 
various points in time.

– i.e. registers are not specifically named

27

Register Renaming example

I1: R3b  R3a + R5a

I2: R4b  R3b + 1
I3: R3c  R5a + 1
I4: R7a  R3c + R4b

• Without subscript refers to logical register in 
instruction

• With subscript is hardware register allocated
• In this example, the creation of R3c in I3 avoids... 

– the antidependency on the 2nd instruction and
– output dependency on the 1st instruction, 

and it does not interfere with the correct value being
accessed by I4. 

• The result is that I3 can be issued until the 1st 
instruction is complete and the 2nd instruction is 
issued

28

Machine Parallelism

• 3 hardware techniques in superscalar 

processors to enhance performance:

– Duplication of Resources

– Out of order issue

– Renaming

• Next slide shows results of a study, made use 

of a simulation that modeled a machine with 

the characteristic of the MIPS R2000, 

augmented with various superscalar features

29

Speedups of Machine Organizations

without Procedural Dependencies

30

• Graphs yield some important conclusions:

– Not worth duplication functions without register renaming

– Need instruction window large enough (more than 8)



Copyright 2000 N. AYDIN. All rights 

reserved. 6

Superscalar Execution

31

Superscalar Implementation

• Simultaneously fetch multiple instructions

• Logic to determine true dependencies involving 

register values

• Mechanisms to communicate these values

• Mechanisms to initiate multiple instructions in 

parallel

• Resources for parallel execution of multiple 

instructions

• Mechanisms for committing process state in 

correct order
32

Pentium 4

• 80486 - CISC

• Pentium – some superscalar components

– Two separate integer execution units

• Pentium Pro – Full blown superscalar

• Subsequent models refine & enhance 

superscalar design

33

Pentium 4 Block Diagram

34

Pentium 4 Operation

• Fetch instructions form memory in order of static program

• Translate instruction into one or more fixed length RISC 

instructions (micro-operations)

• Execute micro-ops on superscalar pipeline

– micro-ops may be executed out of order

• Commit results of micro-ops to register set in original program 

flow order

• Outer CISC shell with inner RISC core

• Inner RISC core pipeline at least 20 stages

– Some micro-ops require multiple execution stages

• Longer pipeline

– c.f. five stage pipeline on x86 up to Pentium

35

Pentium 4 Pipeline

36



Copyright 2000 N. AYDIN. All rights 

reserved. 7

Pentium 4 Pipeline Operation (1)

37

Pentium 4 Pipeline Operation (2)

38

Pentium 4 Pipeline Operation (3)

39

Pentium 4 Pipeline Operation (4)

40

Pentium 4 Pipeline Operation (5)

41

Pentium 4 Pipeline Operation (6)

42



Copyright 2000 N. AYDIN. All rights 

reserved. 8

PowerPC

• Direct descendent of IBM 801, RT PC and 

RS/6000

• All are RISC

• RS/6000 first superscalar

• PowerPC 601 superscalar design similar to 

RS/6000

• Later versions extend superscalar concept

43

PowerPC 601 General View

44

45

PowerPC 601 Pipeline Structure PowerPC 601 Pipeline

46

47


