Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr
nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

Computer Architecture

RISC Characteristics

Outline

» Major Advances in Computers
» Comparison of processors

« Driving force for CISC

» Execution Characteristics

» Large Register File
 Registers for Local Variables
 Global Variables

» Compiler Based Register Optimization
» Graph Coloring

» Register Optimization

» RISC Characteristics

» RISC Pipelining

Major Advances in Computers

The family concept
IBM System/360 1964
DEC PDP-8
Separates architecture from implementation
Microporgrammed control unit
Idea by Wilkes 1951
Produced by IBM S/360 1964
Cache memory
IBM S/360 model 85 1969
Solid State RAM
Microprocessors
— Intel 4004 1971
Pipelining
— Introduces parallelism into fetch execute cycle
Multiple processors

RISC

» Reduced Instruction Set Computer (RISC)

+ Key features
Large number of general purpose registers

And/or use of compiler technology to optimize
register usage

Limited and simple instruction set
Emphasis on optimising the instruction pipeline

Comparison of processors

Complex Instruction Sct Reduced Instruction Superscalar
{CISC)Computer Set (RISC) Computer

Characteristic M VAX Ilel | SPARC | MIES | PowerPC | Ulia MBS
068 | LLAEO | 848s R400 SPARC | RI0000

Year developed 1973 1978 1989 1987 1991 1993 199 199

Number of 208 303 25 9 a4 25

instructions

Instruction sice (byles) | 26 257 1L + 4 4 + 4

Addressing modes 4 » 1L L L 2 1 L

Number of general- 16 16 8 40-520 32 3 0-520 3

purpose registers

Confral memory size 420 480 246 — — - — —

(Kbits)

Cache size (KBjtes) 64 6 8 3 128 16-22 E 64

Copyright 2000 N. AYDIN. All rights
reserved.

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Driving force for CISC

Complex Instruction Set Computer (CISC)

Software costs far exceed hardware costs

Increasingly complex high level languages

» Major cost in the lifecycle of a system is software, not
hardware

» Systems have also an element of unreliability
— Itis common for programs, both system and application, to continue to

exhibit new bugs after years of operation

» Response from researchers and industry has been to develop

ever more powerful and complex high-level programming

languages

— HLLs allow programmers to express algorithms more concisely

Driving force for CISC

« This solution gave rise to another problem:
Semantic gap, which is...

« difference between the operations provided in HLLs and those provided in
computer architecture

— Symptoms of this gap:

« Execution ineficiency
« Excessive machine program size
« Compiler complexity

« Processor designers response:

Architectures intended to close this gap, such as...
« Large instruction sets
« More addressing modes
« Hardware implementations of HLL statements
— e.g. CASE (switch) on VAX

Intention of CISC

Complex instruction sets are intended to...
+ Ease the task of compiler writer

« Improve execution efficiency

— Complex operations can be implemented in
microcode

* Provide support for more complex HLLs

Execution Characteristics

« Studies have been done over the years to determine the
characteristics and patterns of execution of machine
instructions generated from HLL programs

« The results of these studies inspired some researchers to look
for a different approach:

To make the architecture that supports the HLL simpler, rather than
more complex

» The aspects of computation of interest are as follows:

— Operations performed

« Determine the functions to be performed by the processor and its interaction
with memory

— Operands used

« Determine the memory organization for storing them and the addressing
modes for accessing them

— Execution sequencing
« Determines the control and pipeline organization

Relative Dynamic Frequency of HLL Operations

» Avariety of studies have been done to analyze the behavior of HLL
programs.

+ Dynamic studies are measured during the execution of the program
+ The table indicates the relative significance of various statement types in an
HLL

Dynamic

Machine- Memory-)
Occurrence Instruction Reference Assignments
Pascal | C Pascal C | Pascal C Movement of data

— Conditional statements
(IF, LOOP)
Sequence control
CALL | 15% = 12% 31% | 33% 44% 45% |« Procedure call-return is

ASSIGN | 45% 38% 13% 13% 14% 15%
Loor 5% 3% 42% 32% 33% 26%

IF 29% | 4% 1% | 21% 1% | 13% very time consuming
GOTO - 3% . . . _ — Depends on number of

parameters passed
OTHER 6% | 1% | 3% | 1% 2% | 1%

— Depends on level of
nesting

« Some HLL instruction lead to many machine code operations

Operands

 Table shows dynamic percentage of operands

Pascal ¢ Average
Integer Constant 16% 23% 20%
Scalar Variable 58% 53% 55%
Array/Structure 26% 24% 25%

» Mainly local scalar variables

+ Optimisation should concentrate on accessing
local variables

Copyright 2000 N. AYDIN. All rights
reserved.

Implications

and most time consuming features
Large number of registers

— Operand referencing

Careful design of pipelines

— Branch prediction etc.

Simplified (reduced) instruction set

Best support is given by optimising most used

Large Register File

+ Software solution

— Require compiler to allocate registers

— Allocate based on most used variables in a given

time

— Requires sophisticated program analysis
 Hardware solution

— Have more registers

— Thus more variables will be in registers

Registers for Local Variables

« Store local scalar variables in registers
« Reduces memory access

« Every procedure (function) call changes
locality

+ Parameters must be passed
* Results must be returned
« Variables from calling programs must be

Global Variables

« There are two options for storing variables
declared as global in an HLL:
— Allocated by the compiler to memory
« Instructions will use memory-reference operands
« Inefficient for frequently accessed variables
— Have a set of registers for global variables
« Fixed in number
« Available to all procedures

All local scalars Recently-used local scalars

Individual variables Blocks of memory

Compiler-assigned global variables =~ Recently-used global variables

Save/Restore based on procedure
nesting depth

Save/Restore based on cache
replacement algorithm

Register addressing Memory addressing

 Adressing overhead
— Large based register file is superior

» Optimized register usage is the responsibility of the
compiler

» HLL programs have no explicit references to registers

* The objective of compiler is to keep the operands for
as many computations as possible in registers to
minimize load-and-store operations

 Following approach is taken:

Assign symbolic or virtual register to each candidate
variable

— Compiler maps (unlimited) symbolic registers to a fix
number of real registers

Symbolic registers that do not overlap can share the same
real registers

— If you run out of real registers some variables use memory

restored * Increased hardware burden
» Compiler must decide which global variables should be
assigned to registers
Registers v Cache Compiler Based Register Optimization
e ————— S + Assume small number of registers (16-32)

Copyright 2000 N. AYDIN. All rights
reserved.

Graph Coloring

» The essence of the optimization task is to decide which
uantities are to be assigned to registers at any given point in
the program
« The technique commonly used in RISC compilers is known as
graph coloring:
— Given a graph of nodes and edges
Assign a color to each node such that...
« Adjacent nodes have different colors
+ Use minimum number of colors
« Graph coloring is adapted to the compiler problem as follows:
— Nodes of the graph are symbolic registers
— Two registers that are live in the same program fragment are joined by
an edge
Try to color the graph with n colors, where n is the number of real
registers
Nodes that share the same color can be assigned to the same register
— Nodes that can not be colored are placed in memory

Graph Coloring Approach

« Assume a program with 6 symbolic registers to be compiled into 3 actual
registers

« Apossible coloring with 3 colors is indicated.

« One symbolic register, F, is left uncolored and must be used dealt with
using loads and stores

:

¥

B c D E F

Rl R2 R3

() Time sequence of active use of registers

(b) Register interfercnce graph

Register Optimization

« There is a trade of between...
— Use of large set of registers and...
— Compiler-based register optimization
+ In one study, reported that...
— With a simple register optimization, there is little
benefit to the use of more than 64 registers
— With reasonably sofisticated register optimization
techniques, there is only marginal performance
improvement with more than 32 registers

Why CISC (1)?

 Two principle reasons:
— Compiler simplification?
* Disputed...
» Complex machine instructions harder to exploit
« Optimization more difficult
— Smaller programs?
* Program takes up less memory but...
* Memory is now cheap
» May not occupy less bits, just look shorter in symbolic
form
— More instructions require longer op-codes
— Register references require fewer bits

Why CISC (2)?

+ Faster programs?
Bias towards use of simpler instructions
— More complex control unit
— Microprogram control store larger
— thus simple instructions take longer to execute

« Itis far from clear that CISC is the appropriate
solution

RISC Characteristics

» Common characteristics of RISC are:
—One instruction per cycle
—Register to register operations
—Few, simple addressing modes
—Few, simple instruction formats
—Hardwired design (no microcode)
—Fixed instruction format
—More compile time/effort

Copyright 2000 N. AYDIN. All rights
reserved.

RISC v CISC

Not clear cut

Many designs borrow from both
philosophies

pure RISC

pure CISC
—e.g. PowerPC and Pentium |1

» More recent RISC designs are no longer

More recent CISC designs are no longer

RISC Pipelining

» Most instructions are register to register
» An instruction cycle has two phases of execution:
— I Instruction fetch
— E: Execute
« Performs an ALU operation with register input and output
 For load and store operations, there are three
stages:
— I Instruction fetch
— E: Execute
« Calculates memory address

— D: Memory
« Register to memory or memory to register operation

Sequential execution

Load rA=M I1/E|D
Load MB—M I1(ED
Add C—rA+1B 1|E
Store M =—1C 1|E|D
Branch X 1|E

« Timing of a sequence of instructions with...
— No pipelining
« This is a wasteful process

Pipelined timing - |

Load 1A-—M I|E|[D

Toad tB-—M 1 E|D

Add 1C—rA+1B I E

Store M —1C I1|E|D

Branch X 1 E

NOOP I1|E
+ Thisisa.

Two stage pipelining
Provides upto twice the execution rate of a serial scheme
I and E stages of two different instructions are performed simultaneously
+ Two main problems:

Only one memory access per stage

+ Assuming that single port main memory is used
— Branch instruction interrupts the sequencial flow of execution

+ NOOP is inserted by compiler or assembler for minimum circuitry

Pipelined timing - 11

Load rA<M 1|E|D

Load B—M I|E[D

NOOP I|E

Add 1C=—rA+1B I

Store M < 1C I|E|D
Branch X I[E
NOOP I|E

« Pipelining can be improved by...
permitting two memory access per stage
Upto three instructions can be overlapped, prividing..
+ Animprovement as much as a factor of 3.

NOORP is inserted by compiler or assembler for minimum circuitry

< Branch instruction interrupts the sequencial flow of execution

Pipelined timing - 111

Load 1AM 1 |E;|Ez|D
Load 1B~ M I [Ey[E>[D
NOOP I|[E\|E>
NOOP I [Ei[E>
Add 10— rA +1B 1 |Ei|E>2
Store M« 1C I [Eq|Ex| D
Branch X I |E; [E>
NOOP I [E|Ex
NOOP I [E1|Eo

Because E stage involves ALU operation, it may be longer.
« Threfore E stage...
can be devided into two substages
« E, :register file read
« E, : ALU operation and register write
+ Thisresultsina...
— four stage pipeline
— Maximum speed up of a factor of 4

Copyright 2000 N. AYDIN. All rights
reserved.

Optimization of Pipelining

« Pipelining in RISC is efficient.
 The reason for this is that...
— RISC instructions are simple and regular
+ However branch dependencies reduce the overall
execution rate
» To compensate for these dependencies ...
— some code recognition techniques have been developed
+ Delayed branch

— Does not take effect until after execution of following
instruction

— This following instruction is the delay slot
— Iustrated in next slide

Normal and Delayed Branch

Address Normal Branch Delayed Branch Optimized
Delayed Branch

100 LOADX, rA LOADX, rA LOADX, rA
101 ADD 1,1A ADD 1,rA JUMP 105
102 JUMP 105 JUMP 106 ADD 1,tA
103 ADD rA, B NOOP ADD rA, B
104 SUB rC, B ADD rA,rB SUB 1C, 1B
105 STORE rA,Z SUB rC,rB STORE 1A, Z
106 STORE 1A, Z

Traditional pipeline

Time

1 2 3 4 5 6 7 8
100LOAD X, x4 1 |E|D
10LADD L4 1 E
102 JUMP 105 1| E
103 ADD r4. 1B 1
105STORE =4, Z 1 []| D

+ JUMP instruction is fetched at time 4.
+ Attime 5, JUMP is executed and ADD is fetched

— However, pipeline must be cleared of instruction 103 because of JUMP
instruction

- Attime 6, instruction 105 is loaded
« There must be a special circuitry to clear pipeline in branch instructions

RISC pipeline with inserted NOOP

SEIEEEREEENENER
100 LOAD X, rA I E D
10LADD 1,ra I|E
102 JUMP 106 1 E
103 NOOP 1 E
106 STORE rA, 7 1 E D

» Because a NOOP inserted, there is no need for
special circuitry to clear pipeline
—NOOP executes with no effect

Reversed instructions

Time

HEAEEENEREAEA KN
100 LOADX, Ar 1l
101 JUMP 105 I E
102ADD 1,4 1| E
103 STORE £4, Z I|[E]|D

« JUMP is fetched at time 2, before the ADD instruction

» However, ADD is fetched before JUMP is executed

+ Attime4, ADD is executed at the same time that instruction
105 is fetched

Use of Delayed Branch

AEEEEEIEEENEAN]
100 LOAD X, 14 T |E|oD

101400 1. 78 T £

102 JUMP 105 T | E

103 ADD 1A 18 1

108 STORE oA, £ T | E|D

(s) Trasitional Pipeine.

100 LOAD X, 4 TTE] D
101.AD0 1, rA T E 100 LOAD X, AT T E | D

102 JUMF 108 T | E 101 JUMP 108 T E

103 HOOP T | E 102 ADD 1. oA T E

106 STORE (A, Z I [E 0| twsstorEmz " |[E | D

(¢) Reversed Instructions
(b} RISC Pipeline with Inseried NOOP

Copyright 2000 N. AYDIN. All rights
reserved.

Controversy

 Quantitative
— compare program sizes and execution speeds
» Qualitative
— examine issues of high level language support and use
of VLSI real estate
* Problems
— No pair of RISC and CISC that are directly comparable
— No definitive set of test programs

— Difficult to separate hardware effects from complier
effects

— Most comparisons done on “toy” rather than production
machines

— Most commercial devices are a mixture

MIPS R4000

1st commercial RISC chip developed by MIPS
Technology inch

MIPS R2000 and R3000, are 32 bit RISC
processors

MIPS R4000 is 64 bit processor

R4000 is partitioned into two sections:

— One contains CPU

— The other contains the coprocessor for memory
management

32 64 bit registers
Upto 128 Kbytes of high-speed cache

Instruction set

or Deseription or Description
Load/Store Instruetions Multiply/Divide Instructions
1B Load Byte MULT Multiply
LBU Load Byte Unsigned MULTU Multiply Unsigned
LH Load Halfword DIV Divide
LHU Load Halfword Unsigned DIVU Divide Unsigned
w Load Word MFHI Move From HI
LWL Load Word Left MTHI Move Ta HI
LWR Load Word Right MFLO Move From LO
SB Store Byte MTLO Move To LO
SH Store Halfword Jump and Branch Instructions
sw Store Word] Jump
SWL Store Word Left JAL Jump and Link
SWR Store Word Right R Jump to Register

Instruction set

Arithmetic Instructions (ALU Immediate) JALR Jump and Link Register
ADDI Add Immediate BEQ Branch on Equal
ADDIU Add Immediate Unsigned BNE Branch on Not Equal
SLTI Set on Less Than Immediate BLEZ Branch on Less Than or Equal to Zero
SLTIU Seton Less Than Immediate Unsigned BGTZ Branch on Greater Than Zero
ANDI AND Inmediate BLTZ Branch on Less Than Zero
ORI OR Immediate BGEZ Branch on Greater Than or Equal to Zero
XORI Exclusive-OR Immediate BLTZAL Branch on Less Than Zero And Link

LuT Load Upper Immediate

BGEZAL Branch on Greater Than or Equal to Zero
And Link

40,

Instruction set

Arithmetic Instructions (3-operand, R-type) Coprocessor Instructions

ADD Add LWCz Load Word to Coprocessor
ADDU Add Unsigued SWCz Store Ward to Coprocessor
SUB Subtract MTCz Move To Coprocessor
SUBU Subtract Unsigned MFCz Move From Coprocessor
SLT Set on Less Than CTCz Move Control To Coprocessor
SLTU Set on Less Than Unsigned CFCz Mave Control From Coprocessar
AND AND COPz Coprocessor Operation.
OR OR BCzT Branch on Coprocessar z True
XOR Exclusive-OR BCzF Branch on Copracessor z False
NOR NOR Special Instructions

Shift Instructions SYSCALL System Call
SLL Shift Left Logieal BREAK Break

SRL Shift Right Logical

SRA Shift Right Arithmetic

SLLV Shift Left Logical Variable
SRLV Shift Right Logical Variable
SRAV__ Shift Right Asithmetic Variable

MIPS instruction formats

6 5 5 16
Iype I Operation I s | it I Tmmediate .
(immediate)
[26
ove [operaton | Target ¥
(ump)

6 5 5 5 5 3
Rave - [opeion] = | n | | shn | Funcion Jy

(register)

Operation Operation code
15 Source register specifier
h Source/destination register specificr

TImmediate Immediate, branch, or address displacement
Target Jump tarect address

d Destination register specifier

Shift Shift amount

Funetion ALUishift funetion specifier

a2

Copyright 2000 N. AYDIN. All rights
reserved.

