
Copyright 2000 N. AYDIN. All rights

reserved. 1

Computer Architecture

Prof. Dr. Nizamettin AYDIN

naydin@yildiz.edu.tr

nizamettinaydin@gmail.com

http://www.yildiz.edu.tr/~naydin

1

Computer Architecture

RISC Characteristics

2

Outline

• Major Advances in Computers

• Comparison of processors

• Driving force for CISC

• Execution Characteristics

• Large Register File

• Registers for Local Variables

• Global Variables

• Compiler Based Register Optimization

• Graph Coloring

• Register Optimization

• RISC Characteristics

• RISC Pipelining
3

Major Advances in Computers

• The family concept
– IBM System/360 1964

– DEC PDP-8

– Separates architecture from implementation

• Microporgrammed control unit
– Idea by Wilkes 1951

– Produced by IBM S/360 1964

• Cache memory
– IBM S/360 model 85 1969

• Solid State RAM

• Microprocessors
– Intel 4004 1971

• Pipelining
– Introduces parallelism into fetch execute cycle

• Multiple processors
4

RISC

• Reduced Instruction Set Computer (RISC)

• Key features

– Large number of general purpose registers

– And/or use of compiler technology to optimize

register usage

– Limited and simple instruction set

– Emphasis on optimising the instruction pipeline

5

Comparison of processors

6

mailto:naydin@yildiz.edu.tr
mailto:nizamettinaydin@gmail.com

Copyright 2000 N. AYDIN. All rights

reserved. 2

Driving force for CISC

• Complex Instruction Set Computer (CISC)

• Software costs far exceed hardware costs

• Increasingly complex high level languages

• Major cost in the lifecycle of a system is software, not

hardware

• Systems have also an element of unreliability

– It is common for programs, both system and application, to continue to

exhibit new bugs after years of operation

• Response from researchers and industry has been to develop

ever more powerful and complex high-level programming

languages

– HLLs allow programmers to express algorithms more concisely

7

Driving force for CISC

• This solution gave rise to another problem:

– Semantic gap, which is...

• difference between the operations provided in HLLs and those provided in

computer architecture

– Symptoms of this gap:

• Execution ineficiency

• Excessive machine program size

• Compiler complexity

• Processor designers response:

– Architectures intended to close this gap, such as...

• Large instruction sets

• More addressing modes

• Hardware implementations of HLL statements

– e.g. CASE (switch) on VAX

8

Intention of CISC

Complex instruction sets are intended to...

• Ease the task of compiler writer

• Improve execution efficiency

– Complex operations can be implemented in

microcode

• Provide support for more complex HLLs

9

Execution Characteristics

• Studies have been done over the years to determine the
characteristics and patterns of execution of machine
instructions generated from HLL programs

• The results of these studies inspired some researchers to look
for a different approach:
– To make the architecture that supports the HLL simpler, rather than

more complex

• The aspects of computation of interest are as follows:
– Operations performed

• Determine the functions to be performed by the processor and its interaction
with memory

– Operands used
• Determine the memory organization for storing them and the addressing

modes for accessing them

– Execution sequencing
• Determines the control and pipeline organization

10

Relative Dynamic Frequency of HLL Operations

• A variety of studies have been done to analyze the behavior of HLL
programs.

• Dynamic studies are measured during the execution of the program

• The table indicates the relative significance of various statement types in an
HLL

– Assignments
• Movement of data

– Conditional statements
(IF, LOOP)

• Sequence control

• Procedure call-return is
very time consuming

– Depends on number of
parameters passed

– Depends on level of
nesting

• Some HLL instruction lead to many machine code operations

Dynamic

Occurrence
Machine-

Instruction

Weighted

Memory-

Reference

WeightedPascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO — 3% — — — —

OTHER 6% 1% 3% 1% 2% 1%

11

Operands

• Table shows dynamic percentage of operands

• Mainly local scalar variables

• Optimisation should concentrate on accessing

local variables

Pascal C Average

Integer Constant 16% 23% 20%

Scalar Variable 58% 53% 55%

Array/Structure 26% 24% 25%

12

Copyright 2000 N. AYDIN. All rights

reserved. 3

Implications

• Best support is given by optimising most used

and most time consuming features

• Large number of registers

– Operand referencing

• Careful design of pipelines

– Branch prediction etc.

• Simplified (reduced) instruction set

13

Large Register File

• Software solution

– Require compiler to allocate registers

– Allocate based on most used variables in a given

time

– Requires sophisticated program analysis

• Hardware solution

– Have more registers

– Thus more variables will be in registers

14

Registers for Local Variables

• Store local scalar variables in registers

• Reduces memory access

• Every procedure (function) call changes

locality

• Parameters must be passed

• Results must be returned

• Variables from calling programs must be

restored

15

Global Variables

• There are two options for storing variables

declared as global in an HLL:

– Allocated by the compiler to memory

• Instructions will use memory-reference operands

• Inefficient for frequently accessed variables

– Have a set of registers for global variables

• Fixed in number

• Available to all procedures

• Increased hardware burden

• Compiler must decide which global variables should be

assigned to registers

16

Registers v Cache

Large Register File Cache

All local scalars Recently-used local scalars

Individual variables Blocks of memory

Compiler-assigned global variables Recently-used global variables

Save/Restore based on procedure

nesting depth

Save/Restore based on cache

replacement algorithm

Register addressing Memory addressing

• Adressing overhead

– Large based register file is superior

17

Compiler Based Register Optimization

• Assume small number of registers (16-32)

• Optimized register usage is the responsibility of the
compiler

• HLL programs have no explicit references to registers

• The objective of compiler is to keep the operands for
as many computations as possible in registers to
minimize load-and-store operations

• Following approach is taken:
– Assign symbolic or virtual register to each candidate

variable

– Compiler maps (unlimited) symbolic registers to a fix
number of real registers

– Symbolic registers that do not overlap can share the same
real registers

– If you run out of real registers some variables use memory
18

Copyright 2000 N. AYDIN. All rights

reserved. 4

Graph Coloring

• The essence of the optimization task is to decide which
quantities are to be assigned to registers at any given point in
the program

• The technique commonly used in RISC compilers is known as
graph coloring:
– Given a graph of nodes and edges

– Assign a color to each node such that...
• Adjacent nodes have different colors

• Use minimum number of colors

• Graph coloring is adapted to the compiler problem as follows:
– Nodes of the graph are symbolic registers

– Two registers that are live in the same program fragment are joined by
an edge

– Try to color the graph with n colors, where n is the number of real
registers

– Nodes that share the same color can be assigned to the same register

– Nodes that can not be colored are placed in memory

19

Graph Coloring Approach

• Assume a program with 6 symbolic registers to be compiled into 3 actual
registers

• A possible coloring with 3 colors is indicated.

• One symbolic register, F, is left uncolored and must be used dealt with
using loads and stores

20

Register Optimization

• There is a trade of between...

– Use of large set of registers and...

– Compiler-based register optimization

• In one study, reported that...

– With a simple register optimization, there is little

benefit to the use of more than 64 registers

– With reasonably sofisticated register optimization

techniques, there is only marginal performance

improvement with more than 32 registers

21

Why CISC (1)?

• Two principle reasons:

– Compiler simplification?

• Disputed…

• Complex machine instructions harder to exploit

• Optimization more difficult

– Smaller programs?

• Program takes up less memory but…

• Memory is now cheap

• May not occupy less bits, just look shorter in symbolic

form

– More instructions require longer op-codes

– Register references require fewer bits

22

Why CISC (2)?

• Faster programs?

– Bias towards use of simpler instructions

– More complex control unit

– Microprogram control store larger

– thus simple instructions take longer to execute

• It is far from clear that CISC is the appropriate

solution

23

RISC Characteristics

• Common characteristics of RISC are:

– One instruction per cycle

– Register to register operations

– Few, simple addressing modes

– Few, simple instruction formats

– Hardwired design (no microcode)

– Fixed instruction format

– More compile time/effort

24

Copyright 2000 N. AYDIN. All rights

reserved. 5

RISC v CISC

• Not clear cut

• Many designs borrow from both

philosophies

• More recent RISC designs are no longer

pure RISC

• More recent CISC designs are no longer

pure CISC

– e.g. PowerPC and Pentium II

25

RISC Pipelining

• Most instructions are register to register

• An instruction cycle has two phases of execution:

– I: Instruction fetch

– E: Execute

• Performs an ALU operation with register input and output

• For load and store operations, there are three
stages:

– I: Instruction fetch

– E: Execute

• Calculates memory address

– D: Memory

• Register to memory or memory to register operation

26

Sequential execution

• Timing of a sequence of instructions with...

– No pipelining

• This is a wasteful process

27

Pipelined timing - I

• This is a...

– Two stage pipelining

– Provides upto twice the execution rate of a serial scheme

• I and E stages of two different instructions are performed simultaneously

• Two main problems:

– Only one memory access per stage

• Assuming that single port main memory is used

– Branch instruction interrupts the sequencial flow of execution

• NOOP is inserted by compiler or assembler for minimum circuitry

28

Pipelined timing - II

• Pipelining can be improved by...
– permitting two memory access per stage

– Upto three instructions can be overlapped, prividing...

• An improvement as much as a factor of 3.

• Branch instruction interrupts the sequencial flow of execution
– NOOP is inserted by compiler or assembler for minimum circuitry

29

Pipelined timing - III

• Because E stage involves ALU operation, it may be longer.

• Threfore E stage...

– can be devided into two substages

• E1 : register file read

• E2 : ALU operation and register write...

• This results in a ...

– four stage pipeline

– Maximum speed up of a factor of 4
30

Copyright 2000 N. AYDIN. All rights

reserved. 6

Optimization of Pipelining

• Pipelining in RISC is efficient.

• The reason for this is that...
– RISC instructions are simple and regular

• However branch dependencies reduce the overall
execution rate

• To compensate for these dependencies ...
– some code recognition techniques have been developed

• Delayed branch
– Does not take effect until after execution of following

instruction

– This following instruction is the delay slot

– Illustrated in next slide

31

Normal and Delayed Branch

Address Normal Branch Delayed Branch Optimized

Delayed Branch

100 LOADX, rA LOADX, rA LOADX, rA

101 ADD 1, rA ADD 1, rA JUMP 105

102 JUMP 105 JUMP 106 ADD 1, rA

103 ADD rA, rB NOOP ADD rA, rB

104 SUB rC, rB ADD rA, rB SUB rC, rB

105 STORE rA, Z SUB rC, rB STORE rA, Z

106 STORE rA, Z

32

Traditional pipeline

• JUMP instruction is fetched at time 4.

• At time 5, JUMP is executed and ADD is fetched

— However, pipeline must be cleared of instruction 103 because of JUMP

instruction

• At time 6, instruction 105 is loaded

• There must be a special circuitry to clear pipeline in branch instructions

33

RISC pipeline with inserted NOOP

• Because a NOOP inserted, there is no need for

special circuitry to clear pipeline

—NOOP executes with no effect

34

Reversed instructions

• JUMP is fetched at time 2, before the ADD instruction

• However, ADD is fetched before JUMP is executed

• At time 4, ADD is executed at the same time that instruction

105 is fetched
35

Use of Delayed Branch

36

Copyright 2000 N. AYDIN. All rights

reserved. 7

Controversy

• Quantitative
– compare program sizes and execution speeds

• Qualitative
– examine issues of high level language support and use

of VLSI real estate

• Problems
– No pair of RISC and CISC that are directly comparable

– No definitive set of test programs

– Difficult to separate hardware effects from complier
effects

– Most comparisons done on “toy” rather than production
machines

– Most commercial devices are a mixture

37

MIPS R4000

• 1st commercial RISC chip developed by MIPS
Technology inch

• MIPS R2000 and R3000, are 32 bit RISC
processors

• MIPS R4000 is 64 bit processor

• R4000 is partitioned into two sections:

– One contains CPU

– The other contains the coprocessor for memory
management

• 32 64 bit registers

• Upto 128 Kbytes of high-speed cache

38

Instruction set

39

Instruction set

40

Instruction set

41

MIPS instruction formats

42

